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Abstract: Pipelining is a major technique used in high performance proces-
sors. But a fundamental drawback of pipelining is the lost time due to branch
instructions.

A new organization for implementing branch instructions is presented: the
Multiple Instruction Decode Effective Execution (MIDEE) organization. All
the pipeline depths may be addressed using this organization. MIDEE is based
on the use of double fetch and decode, early computation of the target address
for branch instructions and two instruction queues. The double fetch-decode
concerns a pair of instructions stored at consecutive addresses. These instruc-
tions are then decoded simultaneously, but no execution hardware is duplicated;
only useful instructions are effectively executed. A pair of instruction queues
are used between the fetch-decode stages and execution stages; this allows to
hide branch penalty and most of the instruction cache misses penalty.

Trace driven simulations show that the performance of deep pipeline pro-
cessor may dramatically be improved when the MIDEE organization is imple-
mented: branch penalty is reduced and pipeline stall delay due to instruction
cache misses is also decreased.
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MIDEE: Réduction des pénalités de
branchements et de défauts de cache
instruction sur les pipelines profonds

Résumé : La technique du pipeline est utilisée dans les processeurs a haute
performance. Mais les aléas de controle dus aux instructions de branchement
peuvent dégrader sensiblement les performances du pipeline.

Dans ce rapport, nous présentons une nouvelle organisation destiner a ré-
duire les pénalités dues aux instructions de branchement: I’'organisation MIDEE,
Multiple Instruction Decode Effective Execution. Cette organisation peut étre
mise en oeuvre pour toutes les profondeurs de pipeline. Elle est basée sur le char-
gement et décodage de deux instructions consécutives, sur le calcul en avance de
I’adresse cible du branchement et sur 1’utilisation de deux files d’instructions.
Deux instructions sont décodées simultanément, mais aucun ajout matériel n’est
nécessaire pour ’exécution; en effet seules les instructions valides entrent dans
les étages d’exécution. Deux files d’instructions sont utilisées entre les étages de
chargement et décodage et les étages d’exécution; ceci permet de réduire les pe-
nalités de branchement, mais aussi les penalités de défaut de cache instruction.

Les simulations réalisées montrent que les performances pour les pipelines
profonds peuvent étre sensiblement améliorées lorsque 1’on utilise I’organisation
MIDEE: les pénalités de branchement sont réduites et le nombre de gels du
pipeline dus aux défauts de cache instruction diminue.

Mots-clé : pénalité de branchement, pipeline profond, organisation MIDEE,
défaut de cache instruction



1 Introduction

As pipeline length increases, dependencies between instructions, particularly
branch instructions, may affect computer performance. Around 20 % of all ins-
tructions are reported to be branches [5, 18], and one third of the branch ins-
tructions is conditional. These conditional branch instructions are becoming a
major obstacle to the increasing of RISC processor performance, because they
can break the smooth flow of instruction execution; the issuing of instructions
after a branch instruction must often wait until the condition is resolved.

Since conditional branch instructions can severely degrade the performance,
many methods have been proposed to address this problem. Techniques such as
branch prediction strategies [18] have been used in order to reduce the penalty
imposed by branch instructions. These strategies reduce delay by attempting
to predict the direction that a branch instruction will take: they are divided
in static prediction strategies [14, 18] (a privilege direction is statically chosen
at compile time) and dynamic prediction strategies [13, 14, 18, 21] (previously
taken directions are used in order to predict dynamically future directions). Such
techniques can produce a high percentage of correct guesses, but their success is
highly dependent on the application [5]. In order to avoid losing cycles on false
predictions, delayed branches [1, 4] have been implemented in many architectures
[11]. The compiler can exploit these delayed branches by reordering instructions.
Unfortunately, filling one or few delay slots with useful instructions is not always
possible (for the GCC, TEX and SPICE benchmarks in [5], a one delay slot
is filled with a useful instruction in 45% to 50 % of the cases). Many other
techniques [1, 3, 8, 4, 12, 20] have been proposed to reduce penalty due to
conditional branch instructions.

A trend in recent RISC microprocessor implementations is to have deeper
and deeper pipelines (8 stages in the MIPS R4000 instead of 5 stages in the
MIPS R3000 [11]). We propose a new pipeline technique, the MIDEE (Mul-
tiple Instruction Decode Effective Execution), which reduces substantially the
negative effect due to branch instructions and which may be implemented at a
relatively low hardware cost for deep pipelines. In this paper, we restrict our
study on single issue RISC processors.

The MIDEE organization is presented in section 2. It is based on the use
of double fetch and decode as in [12], early computation of the target address
and two instruction queues. The double fetch-decode, contrary to the technique
presented in [12], concerns two consecutive address instructions; they are fet-
ched and then decoded simultaneously. In this organization only useful instruc-
tions are effectively executed. Then no execution hardware (ALU, floating point
ALU, register files ...) is duplicated, and no complex hardware mechanism is nee-
ded for nullifying unuseful instructions. The unuseful prefetched and decoded
in advance, are discarded before entering the execution stage. A quite similar
mechanism was first proposed in [7] by A. Gonzales, J.M. Llaberia and J. Cor-
tadella, but it was only studied for 4 stages pipelines; the MIDEE organization



is proposed for all the pipeline depths. A pair of instruction queues are used
between the fetch-decode stages and execution stage; this allows to hide the
pipeline stalls during instruction cache misses since the instructions are fetched
in instruction queues, while the cache miss is resolved.

Trace driven simulations presented in section 3 show that the performance
of deep pipeline processors may dramatically be improved when the MIDEE
organization is implemented: branch penalty is reduced and pipeline stall delays
due to instruction cache misses are decreased.

2 MIDEE: Multiple Instruction Decode Effec-
tive Execution

The ultimate goal of this work is to allow branches take zero execution cycles and
to decrease the impact of the instruction cache misses on performance. As our
simulation tools [6] are linked to the Sparc instruction set [19], we shall consi-
der this instruction set in the remaining paper®. First, we examine the branch
formats for the instruction set of Sparc [19]. We then describe the design of the
MIDEE organization: double instruction fetch and decode, early computation
of the target address for branch instructions and a pair of instruction queues.
This organization has been proposed for deep pipelines, but in this section
for more simplicity, we often illustrate our mechanism on a 5 stages pipeline.

2.1 Branch instructions

We distinguish two families of conditional branch instructions depending on
whether or not a register value is needed for the target computation. A branch
instruction for which no register value is needed, will be referred to a no register
branch instruction and other branch instructions will be referred to the register
branch instructions. When a no register branch instruction is issued, the target
address can be computed very early in the pipeline, i.e before the preceding ins-
tructions are completed. This target address only depends on the program coun-
ter and a constant displacement coded in the instruction. But when a register
branch instruction is issued, the accurate target address can only be computed
after the computation of the requested register value is completed.

We consider the instruction set of Sparc [19]. In this instruction set, the two
families of conditional branch instructions respectively include:

e no register branch instruction: Bicc (Branch Integer Condition Codes),
CALL (call subroutine), CBccc (Branch on Coprocessor Condition Codes),
FBfce (Branch on Floating-Point Condition Codes).

1The mechanisms presented in the paper are also valid for other instruction sets.
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Figure 1: MIDEE organization for MIPS R3000 and MIPS R4000 pipeline
structure

o register branch instruction: JMPL (Jump and Link) is used to return from
a subroutine and can be used sometimes as a call subroutine.

Two distinct mechanisms will be used in order to treat these two families of
branch instructions. Remark that only conditional branches are no register
branch instructions.

2.2 MIDEE organization

In this section, we present our pipeline organization for a single issue pipeline
processor; it can be used with an any number of stages pipeline. We distinguish
three main units in the processor much the same way the architecture CRISP
[2] and the mechanisms in [8, 9]: one fetch and decode unit, one store unit and
one execution unit. Figure 1 illustrates our pipeline organization, corresponding
to the MIPS R3000 pipeline organization and the MIPS R4000 deeper pipeline
organization [11].
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Figure 2: Fetch-decode unit with sequential instructions

2.2.1 Fetch-decode unit

The basis of our hardware mechanism is the double fetch-decode before the
execution stage. Two instructions stored at consecutive addresses are simulta-
neously fetched, then decoded. Notice that the instruction cache has not to be
dual-ported as in [12], but that the bus width has to be a double word. This is
not a major hardware constraint since instruction caches are now on-chip. The
mechanism is plotted in Figure 2 for 6 consecutive address instructions {I1, I2,
13,14, 15, 16 }. When a branch instruction is fetched, it is detected in the decode
stage, then the target address can be computed in advance for a no register
branch instruction (see Figure 3). This target address computation does not
request an extra register port on the register files (no computation with register
value). In Figure 3, we illustrate this fetch and decode mechanism; while the
branch instruction B is not decoded, two consecutive address sequential instruc-
tions 12, I3 are fetched. Then when the branch instruction is detected in decode
stage, the two consecutive address target instructions T1, T2 are fetched and
so on until the branch instruction is executed; the choice is then made between
sequential and target path. Figure 4 shows the alternative fetch-decode between
the sequential and target path on a 8 stages pipeline.

2.2.2 Imstruction queues and smoothing instruction cache miss pe-
nalties

A pair of instruction queues, the sequential instruction queue and the target
instruction queue, are used in order to store decoded instructions before they
are executed. The sequential queue is used for normal sequential fetching and
the target queue for storing the target instructions in sequence. Unlike on the
IBM RS6000 [10, 16], the sequential queue and the target queue can be swapped.

After a taken branch, the target queue becomes the sequential queue and
the original sequential queue becomes free to be the target queue for the next
branch. When the branch instruction is executed, the chosen queue is either the
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Figure 4: Fetch-decode unit with a branch instrution on a 8 stages pipeline

sequential queue if the branch is untaken or the target queue if the branch is
taken: the content of the untaken queue is then discarded and no unuseful ins-
truction enters the execution phase. At each cycle, only one queue is connected
to execution stage. Notice that the write and read on the instruction queues
does add any cycle in pipeline: when the instruction queue is empty, the ins-
truction flowing out from the decode stage may bypass the instruction queue
(as a classical bypass on register files).

The instruction queues also allow to hide the instruction cache miss penalty.
Most of the delays due to instruction cache misses are reduced because the
pipeline is not stalled as long as the instruction queues are not empty. Figure
5 shows the effect of instruction queues on the number of pipeline stalls due to
instruction cache misses. If the target address for a branch instruction misses,
the fetch and decode for the target path are stopped until branch is executed.
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Figure 5: Instruction queues for smoothing miss penalty

Then only if the branch is taken, the target instructions are readed on secondary
cache or main memory.

Instruction queues size has an effect on performance, this will be studied in
section 3; it depends on the number of fetch-decode stages and the main memory
or secondary cache latency.

2.2.3 Effective execution

Only useful instructions are executed; then no hardware associated with a pipe-
line stage below the decode stage has to be duplicated. In general, the result of
the conditional branch instruction will be determined after that the sequential
instruction and the target instruction have both been decoded, and of course
before they reach the execution stage of the pipeline. When the branch condi-
tion is resolved, one of the two flows of instructions is chosen: in favorable cases,
the instruction to be executed is already in the corresponding instruction queue
and no branch delay penalty is paid.

2.2.4 Smoothing no register branch instruction penalties

In order to explain the general low penalty of a no register branch instruction,
we introduce a new definition: the inter branch delay.



Definition 2.1 An inter branch delay is the number of instructions between
two consecutive branch instructions.

The penalty on many branches can be reduced to zero, if between the decoding
and execution of a no register branch instruction, there are instructions alive
in both instruction queues. The instruction queues will be both not empty if
the inter branch delay is greater or equal to the number of fetch-decode stages.
On the other hand, if the inter branch delay is lower than the number of fetch-
decode stages, a taken branch instruction will induce some penalty. When a
branch instruction is pending, the decoding of a new branch instruction will stall
the decode and prefetch stages until the previous branch is resolved; otherwise
other instruction queues would be needed. More complex schemes for resolving
these cases may be proposed, but more hardware would be needed (e.g. some
other instruction queues).

Figure 6 illustrates the execution of a no register branch instruction using our
mechanism for a 5 stages pipeline similar to the MIPS R3000 pipeline. In this
example, we assume the inter branch delay is greater or equal to the number
of fetch-decode stages: there will be a zero cycle branch penalty. Now let us
consider that the inter branch delay is lower than the number of fetch-decode
stages. Figure 7 shows that the penalty due to this configuration depends on
the nter branch delay and the number of fetch-decode stages. In the illustrated
example, when the two consecutive branch instructions are taken, there is a one
cycle penalty.

2.3 The register branch instructions case

On our benchmark set, we have studied the dynamic ratio of register branch
instructions. These probabilities show that barely 5 % of branch instructions
are register branch instructions. As we are focusing on low cost hardware imple-
mentation (e.g. without requirement of extra access ports on register files and
without complex control for nullifying instructions on false address computa-
tions), we have not considered any specific hardware for these register branch
instructions.

Figure 8 shows the execution of a register branch instruction. If the execution
stage is the nth stage of the pipeline, each register branch instruction will have
(n-z) delay slots, where z is the number of stages before the execution stage.
Thus if the register branch instruction is taken, the branch penalty is z cycles.

3 Performance evaluation

Trace driven simulations have been used to evaluate the performance benefit
that may be expected from using a MIDEE organization in place of a classical
organization.
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Figure 8: Register branch instruction execution with delayed branch strategy

3.1

Simulation model

The Spa package developed by Gordon Irlam [6] was used to generate address
traces for programs executed on a SUN SparcStation2.

We consider that all instructions are executed in one pipeline cycle.

Classical organization

A classical organization has been implemented with a branch penalty
equal to the number of fetch-decode stages minus 1 if the branch is
taken, 0 else. It is adaptable for different pipeline depths.

Performance metric

As we only focus on instruction issuing and cache misses, we consi-
dered a perfect first-level cache which induces no penalty; data are
accessed with 0 cycle. And the first-level instruction cache was consi-
dered to be direct-mapped and its size was 4 Kbytes. The cache line
size was chosen to be 32 bytes. As a metric, we use the average
number of clock Cycles Per Instruction (CPI) [5].
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Benchmarks
The first set of benchmarks includes 3 typical C-like applications:

e GCC: the gce compiler used on a large C input
e LATEX: the latex utility run on a 20 pages article.
e CPTC: a Pascal to C translator run on itself

A monoprocessor version of the NAS benchmark [15] was used as a
Fortran benchmark:

e MG : multigrad
e F'T:3-d FFT PDE

And we have simulated two benchmarks from the SPLASH (bench-
marks run on a monoprocessor [17]).

e PTHOR: a parallel, distributed time, event driven simulator

e LOCUS: a VLSI standard cell router

3.2 Simulation results
3.2.1 Imnter branch delay and number of fetch-decode stages

Table 1 illustrates the inter branch delays for several benchmarks. For example,
with the LATEX benchmark, one instruction inter branch delays represent 0.55
% of the branches.

As an example, if you consider a 4 fetch-decode stages pipeline and the re-
sults average, for the MIDEE organization around 30 % of branch instructions
take penalty: 0.11 % take 3 cycles, 11.09 % take 2 cycles and 18.42 % take 1
cycle. Since around 50 % of branch instructions are taken [18], for the classi-
cal organization 50 % of branch instructions take 3 cycles penalty (number of
fetch-decode stages minus 1).

Figures 9 and 10 illustrate CPI for each benchmark as a function of number of
fetch-decode stages for the MIDEE organization and the classical organization.
When instruction cache misses are not considered, the MIDEE organization
performs better than the classical organization; particularly when the number
of fetch-decode stages is high. For the LOCUS benchmark with a 5 fetch-decode
stages pipeline, the CPI improvement for MIDEE is 18.38 %. These results are
obtained because the branch penalty is reduced for the MIDEE organization.
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Inter branch delay || 1 2 3 4 5
LATEX 0.55 | 6.45 | 12.6 | 9.53 | 17.43
GCC 0.25 | 8.42 | 34.51 | 11.25 | 6.4
CPTC 0.001 | 17.89 | 17.69 | 7.18 | 14.56
FT 0.002 | 6.19 | 11.21 | 2.74 | 0.37
MG 0.006 | 5.11 | 7.68 | 0.79 | 0.65
PTHOR 0.003 | 16.25 | 26.12 | 22.11 | 13.22
LOCUS 0.002 | 17.34 | 19.16 | 33.55 | 10.01
AVERAGE 0.11 11.09 | 18.42 | 12.45 | 8.94
Inter branch delay || 6 7 8 9 10 11+
LATEX 10.78 | 7.81 | 12.22 | 3.38 | 3.23 | 16.02
GCC 20.84 | 5.08 | 1.46 | 3.77 | 1.24 | 6.78
CPTC 15.34 | 5.67 | 5.73 | 10.50 | 2.55 | 2.89
FT 098 | 7.77 | 052 | 12.11 | 2.15 | 55.96
MG 0.89 | 5.83 | 4.88 | 14.71 | 0.15 | 59.31
PTHOR 8.28 | 533|221 | 134 |0.25 | 4.89
LOCUS 6.69 | 4.85| 250 | 1.80 | 0.007 | 4.10
AVERAGE 9.11 | 6.04 | 4.21 | 6.80 | 1.36 | 21.47

Table 1: Dynamic statistics of inter branch delays (%)

3.2.2 Imstruction queue size

Now we study the optimal value of instruction queue size. In the MIDEE orga-
nization, the two instructions queues are not statically affected to the sequential
or target instruction sequences, but their usage are dynamically determined;
then they will have the same size S. The optimal size S depends on the number
of fetch-decode stages and on the main memory or secondary cache latency.

e Number of fetch-decode stages: the instruction queue size S must be
not less than z words (z is the number of fetch-decode stages). Between
the decoding and execution of a no register branch instruction, there are
instructions alive in instruction queue. z is the minimal instruction queue
size.

e Miss latency: this miss latency can concern a second-level cache access
or the main memory access. The instruction queues must allow to hide
most of the instruction cache misses. Most of the delays due to instruction
cache misses can be reduced because the pipeline is not stalled as long as
the instruction queues are not empty. Figures 11 and 12 show the CPI as
function of instruction queue size S for each benchmark. The CPI decreases
as the instruction queue size increases. But when the instruction queue
size is greater than the miss latency, this decreasing is low. And since
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the on-chip space is high cost, the optimal instruction queue size must be
approximatively equal to miss latency.

Figures 9, 10, 11, 12, 13 and 14 show that the MIDEE organization may dra-
matically enhance performance when instruction cache misses are considered.
In this case, the difference between the MIDEE organization and the classical
organization is higher. For the PTHOR benchmark with a 4 fetch-decode stages
pipeline, a 8 cycles miss penalty and a 10 words instruction size, the CPI impro-
vement for MIDEE is 24.77 %. The remaining benchmarks show considerable
improvements in CPI for the MIDEE organization.

4 Conclusion

The MIDEE organization proposed in this paper smoothes the branch and ins-
truction cache miss penalties on deep pipelines. This organization consists of a
double fetch and decode, early computation of the target address for branch ins-
tructions and the using of a pair of instruction queues. The double fetch-decode
concerns a pair of instructions stored at consecutive addresses: no complex dual-
ported instruction cache is required. These instructions are then decoded simul-
taneously, but no execution hardware is duplicated; only useful instructions
are effectively executed. Thus branch penalty is reduced. A pair of instruction
queues are used between the fetch-decode stages and execution stages. As the
MIDEE organization induces advanced decoding, instruction cache misses oc-
cur in advance, but the instructions already decoded may be executed while
servicing the instruction miss. This allows to hide most of the instruction cache
miss penalties.

Simulation results are encouraging. They indicate that the MIDEE orga-
nization compares favorably with the classical organization and show that it
provides a quite significant performance improvement at a reasonable hardware
cost (no duplications of the execution stages, no hardware for nullifying instruc-
tions, etc). Applications of the MIDEE organization may be envisaged in both
low-end and high-end microprocessor designs. The simplicity of the mechanisms
and particularly the absence of the need for nullifying instruction executions al-
lows to envisage boosting low-end microprocessor performance at a reasonable
transistor count, while on high-end microprocessor, they would not lengthen the
critical paths for enabling very high clock frequency.

Since the pipeline depth and particularly cache pipeline access depth, conti-
nue to increase, using the MIDEE organization is becoming very attractive:
branch penalty may be reduced and pipeline stalls due to instruction cache
misses may be decreased. Notice that the MIDEE organization may be adap-
ted to a superscalar pipeline. In this case, the number of instruction addresses
simultaneously fetched and decoded should be twice the number of instructions
issued in parallel.
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Figure 11: CPI as function of instruction queue size (miss latency = 6 CPU

cycles, number of fetch-decode stages = 4)
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Figure 12: CPI as function of instruction queue size (miss latency = 6 CPU

cycles, number of fetch-decode stages = 4)
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