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Luc Robert, Grégoire Malandain

N˚ 3001

Octobre 1996
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Abstract: Many classical image processing tasks can be realized as evaluations of a boolean
function over subsets of an image. For instance, the simplicity test used in 3D thinning re-
quires examining the 26 neighbors of each voxel and computing a single boolean function
of these inputs. In this article, we show how Binary Decision Diagrams can be used to pro-
duce automatically very efficient and compact code for such functions. The total number of
operations performed by a generated function is at most one test and one branching for each
input value (e.g., in the case of 3D thinning, 26 tests and branchings). At each stage, the
function is guaranteed to examine only the pertinent input data, i.e., the values which affect
the result.

As an example, we consider the 2D and 3D simplicity tests in digital topology, and thin-
ning processes. We produce functions much faster than our previously optimized implemen-
tations [18, 4], and than any other implementation we know of. In the case of 3D simplicity
test, on average, at each voxel only 8.7 neighboring voxel values are examined.

Key-words: binary image processing, BDD, mathematical morphology, digital topology
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Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
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Traitement Rapide d’Images Binaires à l’aide de
Diagrammes de Décision Binaires

Résumé : Un certain nombre de techniques de traitement d’image reposent sur l’évaluation
d’une fonction booléenne sur des parties de l’image. Par exemple, la caractérisation des
points simples utilisée pour l’amincissement 3D requiert d’examiner les 26 voisins de chaque
voxel, et de calculer une fonction booléenne de ces valeurs. Dans cet article, nous montrons
comment utiliser les Diagrammes de Décision Binaires pour produire automatiquement du
code très efficace et compact implémentant de telles fonctions. Le nombre total d’opérations
effectuées par la fonction produite est au plus d’un test et un branchement par valeur d’entrée
(c’est-à-dire, dans le cas de l’amincissement 3D, 26 test et branchements). À chaque étape,
la fonction n’examine que les valeurs qui ont une influence sur le résultat.

Comme application, nous considérons la caractérisation des points simples en topologie
discrète 2D et 3D, et plusieurs techniques d’amincissement 3D. Nous produisons des fonc-
tions beaucoup plus efficaces que nos implémentations optimisées existantes [18, 4], et que
toutes les autres implémentations que nous connaissons. Pour caractériser les points simples
en 3D, il suffit en moyenne pour chaque voxel d’examiner 8.7 voisins.

Mots-clé : traitement d’images binaires, bdd, morphologie mathématique, topologie dis-
crète
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1 Introduction

Many classical image processing techniques proceed by analyzing at each element
of the image (pixel, voxel) the values of its neighbors. Considering the particular
case of binary images, a number of techniques for image processing have been de-
veloped in the domains of mathematical morphology [26, 27], digital topology [13],
or for other specific tasks such as image edge linking [10, 22]. Each of these tech-
niques relies on at least one function which, for a given pixel, analyzes the values of
its neighbors. This function has to be evaluated many times during the process. In
fact, a large fraction of the computational effort is devoted to evaluating this func-
tion, and the implementation of the function itself has a tremendous effect on the
efficicency of the whole process. Several solutions have been proposed for efficient
implementations so far.

First, it is sometimes possible to decompose the original function into more ele-
mentary functions, which can be evaluated very efficiently. For instance, in mathe-
matical morphology, a 3x3x3 structuring element is separable and can be decompo-
sed into the product of three structuring elements (3x1x1, 1x3x1 and 1x1x3).

When this is not possible, a very classical approach consists of building a lookup-
table for the whole state space [15]. This approach yields code which evaluates in
constant time: all the input variables are examined once in order to compute the ad-
dress of the entry in the lookup-table. If

�
pixels are examined, the number of en-

tries of the lookup table is ��� . This quickly becomes a very large number as
�

in-
creases. Large lookup tables are undesirable, for reasons of efficiency of memory
access or insufficient memory in the host computer.

When lookup-tables are infeasible due to lack of space, efficient implementa-
tions can still be obtained by using appropriate algorithmic tools. For instance, in
digital topology, graph theory can be applied to efficiently count the connected com-
ponents in a small neighborhood [18].

Sometimes, a trade-off is chosen between space and time complexity. Algorith-
mic considerations are used to reduce the problem into smaller sub-problems, for
instance by taking into account the symmetries of the problem. The sub-problems
are then solved using lookup-tables or quadtrees [17, 15, 24, 12].

We propose another approach to the problem, which relies on the use of Binary
Decision Diagrams (BDD’s), as a convenient representation for boolean functions of
boolean variables. First, we compute the BDD which represents the boolean func-
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4 Luc Robert, Grégoire Malandain

tion to be evaluated. This can be done either by formal boolean computation, or by
“brute-force” processing. We then compile the BDD into efficient C code. The ge-
nerated code has the following interesting properties: first, contrary to all the tech-
niques mentioned above, the code generated using BDD’s is guaranteed to examine
only the pixels whose value affects the result. Second, for each examined pixel va-
lue, only performs one test, one branching, and sometimes one binary operation on
a register.

In section 2, we give a brief description of BDD’s (a detailed description and
review can be found in [7]). Section 3 shows how we use them to generate efficient
code for the computation of functions of boolean variables. In section 4 we show
the results obtained when applying this method to the computation of simple points
in 2D and 3D, and to thinning in 3D. We finally give some conclusions in section 5.

2 Binary Decision Diagrams

Binary Decision Diagrams are a very compact and efficient representation for sym-
bolic manipulation of boolean functions. Up to now, they have been mostly used in
digital-system design and finite-state system analysis [7]. Their concept was intro-
duced by Lee [16] and Akers [1]. A BDD represents a boolean function ���������
	�	��
�����
as a directed acyclic graph, each node of which corresponds to a test of a boolean
variable ��� . Terminal nodes of the graph are the function values (0 or 1). For ins-
tance, in figure 1 we show two different BDD representations of the boolean function
��������������������������� (the boolean and and or are respectively denoted by 	 and � ).

Bryant showed [7] that by imposing a fixed order on the variables and by sharing
identical sub-graphs, it was possible to reduce drastically the size of the structure.
The obtained representation, called a Reduced Ordered Binary Decision Diagrams
(ROBDD), is canonical. In other words, if variable ordering is fixed and reduction
rules are applied, two equivalent boolean functions are guaranteed to have the same
BDD. In figure 2 we show the ROBDD for the function of figure 1.

To compact the ROBDD further, the concept of complement edges was introdu-
ced [5]. A type (say, positive or negative) is assigned to each edge. The fact that an
edge is negative indicates that the boolean value computed by the pointed sub-graph
has to be complemented when evaluating the function. This representation allows a
formula and its negation to share the same graph. It is also canonical.

INRIA
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���

��� ���

�� � � �

���

� �

������

Figure 1: Two BDD representations of ��� � ���
����� � ����� ��� . Each node represents
a test over one variable. Solid lines represent the “then” branches, dotted lines the
“else” branches. The representation on the left is the complete tree corresponding to
the Boole-Shannon expansion of � , whereas the diagram on the right is more com-
pact.

���

� �

� �

Figure 2: The ROBDD representation of ���������
��� � � ����� ��� for the ordering � � �

��� . It contains only 2 non-terminal nodes.
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6 Luc Robert, Grégoire Malandain

From now on, by BDD we will mean “Reduced Ordered BDD with complement
edges”.

From the practical standpoint, there exist a number of packages for BDD ma-
nipulation. State-of-the-art BDD packages implement reduced ordered BDDs with
complement edges, include efficient memory management packages, and allow dy-
namic reordering of the input variables during BDD creation to reduce the BDD
size on the fly. They include programmatic interfaces for creating BDD functions,
controlling variable ordering, and controlling memory management. For the expe-
riments described in the remainder of this article, we used the package described in
[6].

3 Generating fast code for a discrete function

In this section we will show how we can automatically produce an efficient imple-
mentation of a given discrete function, either specified by a formal description in
terms of boolean operations, or induced from an implementation which may be in-
efficient. We first describe how we compute a BDD representing the function. Then,
we show how this BDD can be translated into efficient C-code, based on methods
used in digital system design [9, 8]. We first consider the case of a boolean function.
Then, we consider the more general case of a discrete function (i.e., one which may
take a discrete set of values).

3.1 Computing the BDD corresponding to a boolean function

Let us consider a boolean function � depending on the � boolean variables �����
	�	������ ,
also represented by the � -vector � � ��� ��� 	�	��
����� . One instance of such a function,
for example, would tell if a pixel of a two-dimensional image can be removed in a
thinning operation, based on the values of its 8 neighbors.

3.1.1 Formal derivation

Many functions used in mathematical morphology have a direct expression in terms
of boolean operations over pixel values [26]. For instance, in the case of erosion, a
pixel with value 1 has to be set to 0 if and only if at least one of its neighbors (for

INRIA



Fast Binary Image Processing Using Binary Decision Diagrams 7

a given structuring element) is 0. So, the function for updating the pixel value is as
follows:

��� � ��� �
��� ��� � ���

where ��� are boolean variables representing the pixel values around the pixel of in-
terest, in the domain defined by the structuring element.

In such cases, the BDD of the boolean function can be easily computed formally,
by converting in a straightforward manner boolean operations into BDD manipula-
tions.

3.1.2 Brute-force method

In a second case, we assume that no simple boolean description of the function is
known, but we have access to one implementation of � . This is the case, for ins-
tance, for the simplicity test in 3D digital topology. Another example is a function
for which we have access to object code but not to source code, or a function which
uses a lookup-table of unknown structure.

Let us denote by � � ��� ���
	�	���� � �
	���
 ����� � a � -vector of binary values. Please
note that � � ,.., ��� are binary variables, while �����
	�	���� � is a collection of values that
represent a point in ��
 ����� � . Let ��� be the satisfying set of � , i.e.,��	������ ����� �����
we have the following property:

��� � � ����! �"$#
%& �
��� �'� � ��� � 	 ��� � � � 	 ��� ��() (1)

Based on this property, we can compute the BDD of � incrementally, by scan-
ning the whole range of � , i.e., ��
 ����� � . For each assignment � of the variables, we
compute the output value of the function (0 or 1) using the available implementation.
If the function evaluates to 1, we update the BDD of � using equation (1).

3.2 Compiling the BDD into C-code

Let us first assume that there are no complement edges in the BDD. Then, each non-
terminal node of the BDD can be considered as a quadruple � ���+* �+*-, �+*/.�� where �
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8 Luc Robert, Grégoire Malandain

is the boolean variable tested in the node, and * �+*-,��+*/. are respectively labels assi-
gned to the node and its left and right sons. The terminal nodes are assigned labels
L_TRUE and L_FALSE.

For each non-terminal node � ���+* �+* , �+*/.�� of the BDD, we can generate the fol-
lowing line of C-code:

L: if ( � ) goto * , ; else goto * . ;
The code corresponding to the terminal nodes is added (see example below). All

the lines are grouped into a procedure which takes as input an array of boolean va-
riables, and returns a boolean value. The code corresponding to the root node of the
BDD has to be executed first in the procedure. For instance, the BDD represented
in figure 2 could be translated into the following function:

BOOLEAN func(BOOLEAN x[])
{
L_0: if ( x[0] ) goto L_TRUE; else goto L_1;
L_1: if ( x[1] ) goto L_TRUE; else goto L_FALSE;
L_FALSE: return BOOLEAN_0;
L_TRUE: return BOOLEAN_1;

}

Another way of proceeding consists of keeping the nested structure of the BDD
in the generated code. For instance, if the BDD is a binary decision tree (cf. figure 1,
first case), we can trivially generate the corresponding arborescence of tests. If not
(i.e. simplification rules have been applied), we can still generate the tests corres-
ponding to the tree obtained by depth-first traversal of the BDD. All the edges of the
BDD which do not belong to the traversal tree (i.e. those which, during the traversal,
lead to already-visited nodes) are converted into goto instructions.

The BDD of figure 2 would be then translated into:

INRIA



Fast Binary Image Processing Using Binary Decision Diagrams 9

BOOLEAN func(BOOLEAN x[])
{
if ( x[0] )

return BOOLEAN_1;
else

if ( x[1] )
return BOOLEAN_1;

else
return BOOLEAN_0;

}

An easy optimization, actually provided by the ROBDD package, consists of re-
moving the tests on the last variable.

BOOLEAN func(BOOLEAN x[])
{
if ( x[0] )

return BOOLEAN_1;
else

return x[1];
}

We can easily adapt the same translation schemes to the case of diagrams with
complement edges. In this case, the resulting code has to keep track during the des-
cent of the diagram of the traversed negative branches. For this purpose, we add a
binary register

�
whose initial value is false, and whose status is flipped each time a

negative edge is traversed. When reaching a node, the value of this register is true if
and only if the returned value has to be negated. Thus, for positive edges, the genera-
ted lines of code are identical as above. In the case of a negative edge, a R = !R;
instruction has to be executed before moving to the next test. An example of such
code will be given in the next section.

Finding an efficient translation strategy is highly dependent on the optimization
criterion (size of the code, computational time, etc) and on the machine on which the
code is to be run. In [9], a method for finely adapting the generated code to different
machine architectures is presented. Using such refinements could probably allow
us to produce code adapted to a given machine or architecture, and, in turn, more
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10 Luc Robert, Grégoire Malandain

efficient. In the experiments presented in the remainder of the paper, we focus on
one particular criterion: we try to minimize the number of accesses to image data.
This is indeed one of the most penalizing operations for most architectures where a
small piece of code manipulates a large amount of data.

3.3 The case of a discrete function

In this section we show how the same scheme can be applied to generate efficient
code for discrete – not only boolean – function evaluation. Let us consider a dis-
crete function depending on the vector of input boolean variables � � � �����
	�	��
����� .
We assume that there are at most ��� output values. Thus, each value can be repre-
sented by an assignment of

�
output boolean variables, represented by the vector� � ��� ��� 	�	���� � � .

We represent � by the characteristic function � of its graph. In other words,

� � �����
	�	��
��� �������
	�	���� � � � � � ��� � � � �

3.3.1 Computing �
Computation of the BDD of � is analogous to what has been presented above: If we
denote by �
	 � � � the value of the � th component of � � � � , we have

���������
	�	��
��� ��� ��� 	�	���� � ��� ��� 
����� �����
%& �
��� ��� � ��� � 	 ��� � � � 	 ��� ��	 �

����	�� � � ��	 � �
��	���	�� ��	 � � ��	 ��	��!()
(2)

We compute the BDD of � incrementally, by scanning the whole range of ��� ���
	�	������ � ,
i.e., ��
 ����� � . For each assignment ������� 	�	���� � � of the variables, we compute the output
value of the function using the available implementation, and update the BDD of �
using equation (2).

3.3.2 Generating C-code

Let us assume that the BDD variable ordering is � ���
	�	������ �������
	�	���� � . Since all input
variables appear before output variables, we obtain the configuration depicted in fi-
gure 3.3.2: For a given assignment of the input variables, we follow a path of the
BDD, until we reach a node which does not correspond to an input variable. This

INRIA



Fast Binary Image Processing Using Binary Decision Diagrams 11

node necessarily corresponds to an output variable or a constant value. Because of
the fact that � is a function, we know that

� this node corresponds to the first output variable � � ;
� there is one and only one path issued from this node and leading to 1.

Indeed, the contrary would mean that there exists an set of input values for which
several assignments of the output variables are possible, implying that the graph of
� is not functional.

Further more, due to the basic properties of ROBDD’s, we also know that from
every node corresponding to variable � � , one of the two edges leads directly to 0.
Indeed, � ��� �
�
	�	���� � �-	 ��
 �$��� ��� � ��� ��� � �
	�	���� � � � � ��� ����� �
�
	�	���� � � � 

In other words, given that input data are ��� ���
	�	���� ��� , if � � is set to � ��� � � , then the value
of � does not depend on the last

�	� � output variables.

���

� �

Input variables

Output variables


 � 
 � 
 ������

Figure 3: The ROBDD of the graph of a discrete function (see text).

4 Applications to binary image processing

We applied the code generation techniques presented above to several image proces-
sing problems. We present here some results obtained with the detection of simple

RR n˚3001



12 Luc Robert, Grégoire Malandain

points in 2D and 3D, and the problem of thinning without shrinking in 3D. In each
case we estimate the complexity of the generated code, in terms of the average num-
ber of tests on image values. Let us first recall some basic definitions from 2D and
3D digital topology [23, 13, 21, 28].

4.1 Basic definitions of digital topology

A 2D (respectively 3D) digital image � is a subset of ��� � (resp. ��� � ). A point � 	��
is defined by its coordinates � � ��������� (resp. � � �������
�
� � � ). We consider two distances:

� � ������� � �
�	����
	��
������ ���� �	� � � � � � ��� � �����

��� ������� � � � � �
�	� �!����� ��
	��
"�#��� ���

� � � � ��� �

and the associated neighborhoods:

$ .� ��� � � � � � � � � ���%� �'&)( � ���*�
$ .� ��� � � � � � ��� ������� �+&,( �

The common neighborhoods are:

in 2D 4-neighborhood:
�.- ��� � � $ �� ��� �

8-neighborhood:
�0/ ��� � � $ �� ��� �

in 3D 6-neighborhood:
�01 ��� � � $ �� ��� �

26-neighborhood:
� � 1 ��� � � $ �� ��� �

18-neighborhood:
� � / ��� � � $ �� ��� ��2 $ �� � � �

We define
�43� ��� � � � � ��� ��5�� � � . Two points � and � are said to be � -adjacent

if � 	 � 3� � � � . We call the points of
� 31 � � � the 6-neighbors of � .

A binary image � is defined by a binary partition of � into 6 and 6 such that
672 6 �98 and 6;: 6 �<� . We call 6 the object and 6 the background.

A � -path between two points � and � of 6 (resp. 6 ) is a sequence � � � 	
	
	�� � of
points such that ��� 	<6 (resp. 6 ), � � � � , � � �=� , and ��� � � is � -adjacent to ���
for > � � 	
	
	 � . A subset of 6 (resp. 6 ) is said to be � -connected if a � -path can
be found between each pair of points of 6 (resp. 6 ). A � -connected component

INRIA



Fast Binary Image Processing Using Binary Decision Diagrams 13

of 6 (resp. 6 ) is a subset of 6 (resp. 6 ) which is � -connected and maximal for
inclusion.

To preserve topological consistency, we have to consider different connectivities
for the object and the background [13]. We respectively denote them by � and � . We
consider here that � � � � � � ��� ��� � in 2D and � ��� � � � � ��� ����� or ��� � ��� � in 3D.

4.2 Simple point

A simple point is a point whose removal does not change the topology of the binary
image. The detection of such points is the keypoint of all thinning algorithms [13,
14], thus optimizing this detection is of high interest in computer vision and image
processing. The detection and the characterization of 2D simple points has been al-
ready widely studied. Due to the simplicity of the two-dimensional problem, seve-
ral very efficient implementations have been proposed. Because of new 3D ima-
ging modalities (e.g., medical imaging), the study of the 3D case is becoming more
and more important. It is also much more complex. Morgenthaler [20] proposed
a first characterization of 3D simple points by using 4 local conditions. Tsao and
Fu [29, 13] proposed a simplified form which requires 3 local conditions. Recently,
characterizations with only 2 local conditions has been found [19, 4, 25].

This last characterization [4] is based on the calculation of two numbers of connec-
ted components (we consider that the object is 26-connected while the background
is 6-connected):

� � is simple �	��
 � ��
�
 � 1�� 672 � 3� 1 � � ��� � ��
�
 1�� 6;2 � 3� / � � ��� � ��� (3)

��
�
 � 1�� 6 2 � 3� 1 ��� ��� denotes the number of 26-connected components (26-adjacent
to � ) of the object 6 in

� 3� 1 ��� � , while
��
�
 1�� 6=2 � 3� / ��� ��� denotes the number of

6-connected components (6-adjacent to � ) of the background 6 in
� 3� / � � � .

In the remainder of this section, we first present the results obtained in the simple
case of detecting 2D simple points. The interest in this case is more to demonstrate
the code generation process on a well-known, simple example. Then, we present the
results obtained on the detection of 3D simple points, and the problem of thinning
in 3D.

RR n˚3001



14 Luc Robert, Grégoire Malandain

4.3 Simple points in 2D

Indexed from 0 to 7, the neighbors of a pixel are considered in the following order:
NW, N, NE, W, E, SW, S, SE (i.e. from left to right, lines being considered from top
to bottom). Figure 4 represents the initial – small, but not efficient – procedure used
for BDD generation. The generated BDD is represented in figure 5. The C-code
procedures automatically generated using the two different strategies presented in
section 3.2 are displayed in figures 6 and 7. The generated code has a minimal size
over all the potential variable orderings. Indeed, by computing all the ��� BDD’s cor-
responding to all variable permutations, we checked that the variable order obtained
by applying the sifting minimization algorithm actually corresponds to a global mi-
nimum for the number of nodes. Note that this exhaustive search was possible only
because of the small number of variables.

In table 1, we compare the numbers of tests performed by the initial function and
by the generated code. Both procedures were run on the �

/
potential configurations

of the input values. The table displays, for each number of tests, the corresponding
number of configurations.

number of tests 4 5 6 7 8 9 12 average
initial function (fig. 4) 16 64 32 64 0 64 16 7.00
BDDs function (fig. 6) 144 64 32 8 8 4.72

Table 1: 2D simplicity test: comparison of the initial function with the generated
code.

4.4 Detecting simple points in 3D

In [3], a boolean characterization of 3D simple points is given, which uses 4 boolean
conditions based on local topological numbers.

A straightforward implementation of this characterization was then used to ge-
nerate, using the “brute-force” approach (cf section 3.1.2), a BDD representing the
function which returns TRUE if and only if the point is a simple point.

Computation took several hours on a Sun Sparc 20. As a result, we obtained a
BDD with 1007 nodes. Using the sifting minimization algorithm, we reduced its size

INRIA



Fast Binary Image Processing Using Binary Decision Diagrams 15

int is_simple_2D_initial (const int *V) {
int nb_cc = 0;
if ( !V[1] ) { nb_cc ++; if ( !V[4] && !V[2] ) nb_cc --; }
if ( !V[4] ) { nb_cc ++; if ( !V[6] && !V[7] ) nb_cc --; }
if ( !V[6] ) { nb_cc ++; if ( !V[3] && !V[5] ) nb_cc --; }
if ( !V[3] ) { nb_cc ++; if ( !V[1] && !V[0] ) nb_cc --; }

if ( nb_cc == 1 ) return( 1 ); else return( 0 );
}

Figure 4: The initial, small but not efficient, function used for code generation

Figure 5: The BDD produced after optimization of the number of nodes through
variable reordering. The THEN (resp. ELSE) edges are labeled by 1 (resp. 0). The
sign indicates the type of the edge (cf section 2).
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16 Luc Robert, Grégoire Malandain

int is_simple_2D_BDD_1 (const int *V) {
int R = 0;

L993: if (VAL(V,3)) {goto L929;} else {goto L656;}
L929: if (VAL(V,1)) {goto L641;} else {goto L896;}
L641: if (VAL(V,4)) {goto L305;} else {goto L528;}
L305: if (VAL(V,6)) {goto L081;} else {goto L080;}
L528: if (VAL(V,6)) {goto L080;} else {goto L337;}
L337: if (VAL(V,7)) {goto L081;} else {goto L080;}
L896: if (VAL(V,4)) {R=(!R);goto L305;} else {goto L625;}
L625: if (VAL(V,2)) {goto L081;} else {goto L528;}
L656: if (VAL(V,1)) {goto L832;} else {goto L705;}
L832: if (VAL(V,4)) {goto L864;} else {goto L545;}
L864: if (VAL(V,5)) {R=(!R);goto L305;} else {goto L080;}
L545: if (VAL(V,5)) {goto L081;} else {goto L849;}
L849: if (VAL(V,6)) {goto L081;} else {goto L337;}
L705: if (VAL(V,0)) {goto L961;} else {goto L352;}
L961: if (VAL(V,4)) {goto L081;} else {goto L609;}
L609: if (VAL(V,2)) {goto L081;} else {goto L545;}
L352: if (VAL(V,4)) {goto L864;} else {goto L769;}
L769: if (VAL(V,2)) {goto L545;} else {goto L560;}
L560: if (VAL(V,5)) {goto L528;} else {R=(!R);goto L849;}
L080: return !R;
L081: return R;

}

Figure 6: Function generated using the first scheme (see text).

to 503 nodes. Using the second strategy presented in section 3, we generated a 1500-
line piece of C-code. We then compared the generated code to the initial one in terms
of computational time, by evaluating the function over all the potential variable ( � �

1
)

assignements.
A first comparison between the straightforward implementation of the boolean

characterization and the generated code is given in table 2. Histograms of the num-
bers of tests are given in figure 8. Table 3 shows the average time required for one
function evaluation on several architectures.

minimum average maximum
number of tests number of tests number of tests

bool. charac. of [3] 6 111.41 176
bool. func. (BDDs) 6 8.71 26

Table 2: Comparison of the generated code with the boolean characterization of [3]
for the 3D simplicity test over the � �

1
potential neighborhoods.
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int is_simple_2D_BDD_2 (const int *V) {
int R = 0;
if ( V[3] )
if ( V[1] )

if ( V[4] )
return ( V[6] ? R : !R ) ;

else
Lbl0: if ( V[6] )

return ( !R ) ;
else
return ( V[7] ? R : !R ) ;

else
if ( V[4])

return ( V[6] ? !R : R ) ;
else
if ( V[2] )

return ( R ) ;
else
{ goto Lbl0; }

else
if ( V[1] )

if ( V[4] )
Lbl1: if ( V[5] )

return ( V[6] ? !R : R ) ;
else
return ( !R ) ;

else
Lbl2: if ( V[5] )

return ( R ) ;
else
Lbl3: if ( V[6] )
return ( R ) ;

else
return ( V[7] ? R : !R ) ;

else
if ( V[0] )

if ( V[4] )
return ( R ) ;

else
if ( V[2] )
return ( R ) ;

else
{goto Lbl2;}

else
if ( V[4] )

{goto Lbl1;}
else

if ( V[2] )
{goto Lbl2;}

else
if ( V[5] )

{goto Lbl0;}
else
{R= !R;goto Lbl3;}

}

Figure 7: Function generated using the second scheme (see text).
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18 Luc Robert, Grégoire Malandain

Machine characteristics Time ( � sec)
SUN Ultra1 Sparc, 167MHz, SUNOS5.5 0.211

SGI Indy IP22, 150MHz, IRIX5.3 0.45
DEC Alpha 3000, 166MHz, OSF1V3.2 0.276

Table 3: Average time for one function evaluation (see text).

0.0 50.0 100.0 150.0
0.0

2000000.0

4000000.0

6000000.0

0.0 10.0 20.0 30.0
0.0

5000000.0

10000000.0

15000000.0

Figure 8: Histograms of the numbers of tests needed to evaluate the 3D simplicity
test over the � �

1
possible neighborhoods. Left: boolean characterization [3]. Right:

code produced using BDD’s.
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4.5 Thinning in 3D: first method

Thinning a binary image consists of deleting simple points which are not end points.
In general, from the implementation standpoint, the two tests are performed sequen-
tially. For instance, the deletion condition described in [2] relies on the boolean cha-
racterization described in [3] and an extra condition which tells if the simple point
is an end point. This new constraint increases the number of tests (compare tables 2
and 4, and left histograms of figure 8 and figure 9).

It turns out that the corresponding BDD is much smaller than the one compu-
ted in the previous section (only 272 nodes), which in turn decreases the number of
tests performed by the generated code. This last result is illustrated by table 4: the
minimum, average and maximum numbers of tests to decide whether a point can be
deleted are significantly smaller than for simple point detection.

minimum average maximum
number of tests number of tests number of tests

deletion cond. of [2] 30 114.10 176
bool. func. (BDDs) 2 5.16 25

Table 4: Comparison of the generated code with the deletion conditions [2] over the
� �
1

possible neighborhoods.

4.6 Thinning in 3D: second method

For efficiency, some 3D thinning algorithms do not use directly the 3D simplicity
test, but only sufficient – and computationally simpler – conditions. After these suf-
ficient conditions have been checked, an additional condition prevents end points
from being deleted.

The parallel thinning algorithm described in [11] is one of these. At each itera-
tion, the algorithm updates all the voxel values in parallel. Each iteration is divided
into six stages. Each stage detects border points along one of the 6 directions (N, S,
E, W, Up, Down) and checks if these points can be deleted. Five conditions are pro-
posed in [11] for performing the test. Since these conditions are easily expressed in
terms of boolean expressions, we generated the BDD using the method described in
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Figure 9: Histograms of the numbers of tests involved in checking the deletion
condition over the � �

1
possible neighborhoods. Left: boolean characterization [2].

Right: code produced using BDD’s.

section 3.1.1. We compare here the direct, straightforward implementation of these
5 conditions and the corresponding code generated using BDD’s. The results are
presented in table 5 and figure 10.

minimum average maximum
number of tests number of tests number of tests

deletion cond. of [11] 1 4.83 56
bool. func. (BDDs) 1 3.27 26

Table 5: Comparison of the generated code with the deletion conditions [11] over
the � �

1
possible configurations.

5 Conclusion and future work

This article describes an approach for automatically generating efficient code for
region-based binary image processing algorithms. Inspired from techniques used
in digital system design, this approach can be applied to any binary image proces-
sing algorithm which evaluates a discrete function over small regions of the image
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0.0 20.0 40.0 60.0
0.0

10000000.0

20000000.0

30000000.0

0.0 10.0 20.0 30.0
0.0

5000000.0

10000000.0

15000000.0

20000000.0

25000000.0

30000000.0

35000000.0

Figure 10: Histograms of the number of tests needed to determine if a point can
be deleted [11] over the � �

1
possible configurations. Left: direct implementation.

Right: code produced using BDD’s.

(e.g., discrete morphological and topological operations). Given a description of the
function in terms of either boolean formulae or a compiled module, it automatically
produces a program which implements the function. The generated C source code is
portable and compact. It is also very efficient: at each stage of its execution, the pro-
cedure is guaranteed to examine only the pertinent input data, i.e., the values which
affect the result. For each such value, it performs at most one test, one branching
and one binary register operation.

We applied our method to several binary image processing tasks, such as the 2D
and 3D simplicity tests, and two different 3D thinning processes. In each case, we
produced functions more efficient than the previously optimized implementations,
reducing the execution time by a factor of up to 20.

There remain a number of directions still to be explored. First, there exist many
other image processing applications in which the technique described in this paper
can be directly applied (edges tracking, classification of corners and junctions, etc).
Second, more efficiency can be reached by studying more carefully the distribution
of the incoming data (depending on the type of images or or the algorithm) and ta-
king it into consideration when optimizing the BDD. Third, a better knowledge of
the various efficient data structures used in digital design would probably help us ad-
dress other image processing tasks, or deal with other kinds of images (grey-level,
floating-point).
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22 Luc Robert, Grégoire Malandain

We are convinced that there remains a lot to gain in bringing the power of struc-
tures such as BDD’s to the domains of computer vision and image analysis.
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Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY
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Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399


