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Abstract: Many classical image processing tasks can berealized aseva uations of aboolean
function over subsets of an image. For instance, the simplicity test used in 3D thinning re-
quires examining the 26 neighbors of each voxel and computing a single boolean function
of these inputs. In this article, we show how Binary Decision Diagrams can be used to pro-
duce automatically very efficient and compact code for such functions. The total number of
operations performed by a generated function is at most one test and one branching for each
input value (e.g., in the case of 3D thinning, 26 tests and branchings). At each stage, the
function is guaranteed to examine only the pertinent input data, i.e., the values which affect
the result.

Asan example, we consider the 2D and 3D simplicity testsin digital topology, and thin-
ning processes. We produce functions much faster than our previously optimized implemen-
tations[18, 4], and than any other implementation we know of. In the case of 3D simplicity
test, on average, at each voxel only 8.7 neighboring voxel values are examined.
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Traitement Rapide d’ImagesBinairesal’aide de
Diagrammes de Décision Binaires

Résumé: Un certain nombre de techniques detraitement d'image reposent sur |’ évaluation
d'une fonction booléenne sur des parties de I'image. Par exemple, la caractérisation des
pointssimples utilisée pour I amincissement 3D requiert d’ examiner les 26 voisins de chague
voxel, et de calculer une fonction booléenne de ces valeurs. Dans cet article, nous montrons
comment utiliser les Diagrammes de Décision Binaires pour produire automatiquement du
code tres efficace et compact implémentant de tellesfonctions. Lenombretotal d opérations
effectuées par lafonction produite est au plus d’ un test et un branchement par valeur d entrée
(' est-2dire, dans le cas de I’ amincissement 3D, 26 test et branchements). A chague étape,
lafonction n’examine que les valeurs qui ont une influence sur le résultat.

Comme application, nous considérons la caractérisation des points simples en topologie
discrete 2D et 3D, et plusieurs techniques d’ amincissement 3D. Nous produisons des fonc-
tions beaucoup plus efficaces que nos implémentations optimi sées existantes [18, 4], et que
toutes | es autres implémentations que nous connaissons. Pour caractériser les points simples
en 3D, il suffit en moyenne pour chaque voxel d' examiner 8.7 voisins.

Mots-clé: traitement d'images binaires, bdd, morphologie mathématique, topologie dis-
crete
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1 Introduction

Many classical image processing techniques proceed by analyzing at each element
of the image (pixel, voxel) the values of its neighbors. Considering the particular
case of binary images, a number of techniques for image processing have been de-
veloped in the domains of mathematical morphology [26, 27], digital topology [13],
or for other specific tasks such as image edge linking [10, 22]. Each of these tech-
niquesrelies on at least one function which, for agiven pixel, analyzes the values of
its neighbors. This function has to be evaluated many times during the process. In
fact, alarge fraction of the computational effort is devoted to evaluating this func-
tion, and the implementation of the function itself has a tremendous effect on the
efficicency of the whole process. Several solutions have been proposed for efficient
implementations so far.

First, it is sometimes possible to decompose the original function into more ele-
mentary functions, which can be evaluated very efficiently. For instance, in mathe-
matical morphology, a 3x3x3 structuring element is separable and can be decompo-
sed into the product of three structuring elements (3x1x1, 1x3x1 and 1x1x3).

When thisisnot possible, avery classical approach consistsof building alookup-
table for the whole state space [15]. This approach yields code which evaluates in
constant time: all theinput variables are examined once in order to compute the ad-
dress of the entry in the lookup-table. If N pixels are examined, the number of en-
tries of the lookup tableis 2™, This quickly becomes a very large number as N in-
creases. Large lookup tables are undesirable, for reasons of efficiency of memory
access or insufficient memory in the host computer.

When lookup-tables are infeasible due to lack of space, efficient implementa-
tions can still be obtained by using appropriate algorithmic tools. For instance, in
digital topology, graph theory can be applied to efficiently count the connected com-
ponentsin asmall neighborhood [18].

Sometimes, atrade-off is chosen between space and time complexity. Algorith-
mic considerations are used to reduce the problem into smaller sub-problems, for
instance by taking into account the symmetries of the problem. The sub-problems
are then solved using lookup-tables or quadtrees[17, 15, 24, 12].

We propose another approach to the problem, which relies on the use of Binary
Decision Diagrams (BDD'’s), as aconvenient representation for bool ean functions of
boolean variables. First, we compute the BDD which represents the boolean func-
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4 Luc Robert, Grégoire Malandain

tion to be evaluated. This can be done either by formal boolean computation, or by
“brute-force” processing. We then compile the BDD into efficient C code. The ge-
nerated code has the following interesting properties: first, contrary to all the tech-
niques mentioned above, the code generated using BDD’s is guaranteed to examine
only the pixels whose value affects the result. Second, for each examined pixel va
lue, only performs one test, one branching, and sometimes one binary operation on
aregister.

In section 2, we give a brief description of BDD's (a detailed description and
review can be found in [7]). Section 3 shows how we use them to generate efficient
code for the computation of functions of boolean variables. In section 4 we show
the results obtained when applying this method to the computation of simple points
in 2D and 3D, and to thinning in 3D. We finally give some conclusionsin section 5.

2 Binary Decision Diagrams

Binary Decision Diagrams are avery compact and efficient representation for sym-
bolic manipulation of boolean functions. Up to now, they have been mostly used in
digital-system design and finite-state system analysis[7]. Their concept was intro-
duced by Lee[16] and Akers[1]. A BDD representsaboolean function f(z1, .., z,,)
as a directed acyclic graph, each node of which corresponds to a test of a boolean
variable z;. Termina nodes of the graph are the function values (0 or 1). For ins-
tance, infigure 1 we show two different BDD representations of the boolean function
f(x1,29) = 21 + x5 (the boolean and and or are respectively denoted by . and +).

Bryant showed [ 7] that by imposing afixed order on the variables and by sharing
identical sub-graphs, it was possible to reduce drastically the size of the structure.
The obtained representation, called a Reduced Ordered Binary Decision Diagrams
(ROBDD), is canonical. In other words, if variable ordering is fixed and reduction
rules are applied, two equivalent boolean functions are guaranteed to have the same
BDD. In figure 2 we show the ROBDD for the function of figure 1.

To compact the ROBDD further, the concept of complement edges was introdu-
ced [5]. A type (say, positive or negative) is assigned to each edge. The fact that an
edgeisnegative indicatesthat the bool ean value computed by the pointed sub-graph
has to be complemented when evaluating the function. Thisrepresentation allows a
formula and its negation to share the same graph. It isalso canonical.

INRIA



Fast Binary Image Processing Using Binary Decision Diagrams

Figure 1: Two BDD representations of f(x1,z2) = x1 + x2. Each node represents
atest over one variable. Solid lines represent the “then” branches, dotted lines the
“else” branches. The representation on the left isthe complete tree corresponding to
the Boole-Shannon expansion of f, whereas the diagram on the right is more com-

pact.

Figure 2: The ROBDD representation of f(z,xs) = 1 + x, for theordering z; <
x7. It contains only 2 non-terminal nodes.
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6 Luc Robert, Grégoire Malandain

From now on, by BDD wewill mean “Reduced Ordered BDD with complement
edges’.

From the practical standpoint, there exist a number of packages for BDD ma-
nipulation. State-of-the-art BDD packages implement reduced ordered BDDs with
complement edges, include efficient memory management packages, and allow dy-
namic reordering of the input variables during BDD creation to reduce the BDD
size on the fly. They include programmatic interfaces for creating BDD functions,
controlling variable ordering, and controlling memory management. For the expe-
riments described in the remainder of thisarticle, we used the package described in

[6].

3 Generating fast codefor a discretefunction

In this section we will show how we can automatically produce an efficient imple-
mentation of a given discrete function, either specified by a formal description in
terms of boolean operations, or induced from an implementation which may bein-
efficient. Wefirst describe how we compute aBDD representing the function. Then,
we show how this BDD can be trandated into efficient C-code, based on methods
used in digital systemdesign[9, 8]. Wefirst consider the case of aboolean function.
Then, we consider the more general case of adiscrete function (i.e., one which may
take a discrete set of values).

3.1 Computing the BDD corresponding to a boolean function

L et us consider aboolean function f depending on then boolean variablesx, .., z,,,
aso represented by the n-vector x = (x4, .., x,,). Oneinstance of such a function,
for example, would tell if apixel of atwo-dimensional image can be removed in a
thinning operation, based on the values of its 8 neighbors.

3.1.1 Formal derivation

Many functions used in mathematical morphology have adirect expression interms
of boolean operations over pixel values[26]. For instance, in the case of erosion, a
pixel with value 1 hasto be set to O if and only if at least one of its neighbors (for
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Fast Binary Image Processing Using Binary Decision Diagrams 7

agiven structuring element) is 0. So, the function for updating the pixel valueis as

follows:
f (X) = H T
1<i<n

where z; are boolean variables representing the pixel values around the pixel of in-
terest, in the domain defined by the structuring element.

In such cases, the BDD of the boolean function can be easily computed formally,
by converting in a straightforward manner boolean operations into BDD manipula
tions.

3.1.2 Brute-force method

In a second case, we assume that no simple boolean description of the function is
known, but we have access to one implementation of f. Thisis the case, for ins-
tance, for the ssimplicity test in 3D digital topology. Another example is afunction
for which we have access to object code but not to source code, or afunction which
uses alookup-table of unknown structure.

Let usdenoteby s = (s1,..,s,) € {0,1}" an-vector of binary values. Please
note that x1,..,z,, are binary variables, while s, .., s,, is a collection of values that
represent apointin {0,1}". Let S; bethe satisfying set of f, i.e,

s € Sf = f(S) =1
we have the following property:
fx) =3 ( II (Si-$i+5_z'-$—z‘)> )
s€Sy \1<i<n

Based on this property, we can compute the BDD of f incrementally, by scan-
ning the whole range of x, i.e., {0, 1}". For each assignment s of the variables, we
computethe output value of thefunction (0 or 1) using the availableimplementation.
If the function evaluates to 1, we update the BDD of f using equation (1).

3.2 Compiling the BDD into C-code

Let usfirst assumethat there are no complement edgesin the BDD. Then, each non-
terminal node of the BDD can be considered as a quadruple (z, L, L;, L,) where x
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8 Luc Robert, Grégoire Malandain

is the boolean variable tested in the node, and L, L;, L, are respectively labels assi-
gned to the node and its |eft and right sons. The terminal nodes are assigned |abels
L_TRUEand L_FALSE.

For each non-terminal node (z, L, L,, L,.) of the BDD, we can generate the fol-
lowing line of C-code:

L: if ( x) goto L, ; else goto L,;

The code corresponding to the terminal nodesisadded (see example below). All
the lines are grouped into a procedure which takes as input an array of boolean va-
riables, and returns a boolean value. The code corresponding to the root node of the
BDD has to be executed first in the procedure. For instance, the BDD represented
in figure 2 could be translated into the following function:

BOOLEAN f unc( BOOLEAN x[])

{
L O: if ( x[0] ) goto L_TRUE; else goto L_1;
L_1: if ( x[1] ) goto L_TRUE; else goto L_FALSE;
L_FALSE: return BOOLEAN O;
L_TRUE: return BOOLEAN 1;

}

Another way of proceeding consists of keeping the nested structure of the BDD
inthe generated code. For instance, if theBDD isabinary decisiontree (cf. figure 1,
first case), we can trivially generate the corresponding arborescence of tests. If not
(i.e. ssmplification rules have been applied), we can still generate the tests corres-
ponding to the tree obtained by depth-first traversal of the BDD. All the edges of the
BDD which do not belong to thetraversal tree (i.e. thosewhich, during thetraversal,
lead to aready-visited nodes) are converted into got o instructions.

The BDD of figure 2 would be then translated into:
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BOCOLEAN f unc( BOOLEAN x[])

{
if ( x[0] )
return BOOLEAN 1;
el se
it x[1] )
return BOOLEAN 1;
el se
return BOOLEAN O;
}

An easy optimization, actually provided by the ROBDD package, consistsof re-
moving the tests on the last variable.

BOCLEAN f unc( BOOLEAN x[])
{
if ( x[0] )
return BOOLEAN 1;
el se
return x[1];

We can easily adapt the same translation schemes to the case of diagrams with
complement edges. In this case, the resulting code has to keep track during the des-
cent of the diagram of the traversed negative branches. For this purpose, we add a
binary register R whoseinitia valueisfase, and whose statusisflipped each timea
negative edgeistraversed. When reaching anode, the value of thisregister istrueif
and only if thereturned value hasto be negated. Thus, for positive edges, the genera-
ted lines of code areidentical asabove. Inthecase of anegativeedge,a R = ' R
instruction has to be executed before moving to the next test. An example of such
code will be given in the next section.

Finding an efficient trandlation strategy is highly dependent on the optimization
criterion (size of the code, computational time, etc) and on the machine on which the
codeistoberun. In[9], amethod for finely adapting the generated code to different
machine architectures is presented. Using such refinements could probably allow
us to produce code adapted to a given machine or architecture, and, in turn, more
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10 Luc Robert, Grégoire Malandain

efficient. 1n the experiments presented in the remainder of the paper, we focus on
one particular criterion: we try to minimize the number of accesses to image data.
Thisisindeed one of the most penalizing operations for most architectures where a
small piece of code manipulates alarge amount of data.

3.3 Thecaseof adiscrete function

In this section we show how the same scheme can be applied to generate efficient
code for discrete — not only boolean — function evaluation. Let us consider adis-
crete function depending on the vector of input boolean variablesx = (x4, .., z,).
We assume that there are at most 2% output values. Thus, each value can be repre-
sented by an assignment of £ output boolean variables, represented by the vector
o= (01,..,0k).

We represent f by the characteristic function ¢ of its graph. In other words,

&(z1, .0y X, 01,.,0,) =1 f(X) =0

3.3.1 Computing ¢

Computation of the BDD of ¢ is analogous to what has been presented above: If we
denote by f;(s) the value of the jth component of f(s), we have

¢(~T17":xn7017"a0k) = Z ( H (813314-8_1.%_1) H (f](s)oj—i_mo_J))

s€{0,1}n \1<i<n 1<j<k
2

We computethe BDD of ¢ incrementally, by scanning thewholerangeof (z4, .., z,,),
i.e., {0, 1}". For each assignment (s, .., s,,) Of the variables, we compute the output
value of the function using the available implementation, and update the BDD of ¢
using equation (2).

3.3.2 Generating C-code

Let us assume that the BDD variable ordering is x4, .., z,,, 01, .., 0. Since al input
variables appear before output variables, we obtain the configuration depicted in fi-
gure 3.3.2: For a given assignment of the input variables, we follow a path of the
BDD, until we reach a node which does not correspond to an input variable. This

INRIA
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node necessarily corresponds to an output variable or a constant value. Because of
thefact that f isafunction, we know that

e thisnode corresponds to the first output variable o1

¢ thereisone and only one path issued from this node and leading to 1.

Indeed, the contrary would mean that there exists an set of input values for which
several assignments of the output variables are possible, implying that the graph of
f isnot functional.

Further more, due to the basic properties of ROBDD’s, we aso know that from
every node corresponding to variable o, one of the two edges leads directly to 0.
Indeed,

Y(ty, .., 1) € {0,131 b(51, .., 80y f1(S), Lo, ooy ti) =0
In other words, given that input dataare (s, .., s, ), if o1 issetto f,(s), then thevalue
of ¢ does not depend on thelast k£ — 1 output variables.

Input variables

Output variables

Figure 3: The ROBDD of the graph of a discrete function (see text).

4 Applicationsto binary image processing

We applied the code generation techniques presented above to several image proces-
sing problems. We present here some results obtained with the detection of simple
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12 Luc Robert, Grégoire Malandain

pointsin 2D and 3D, and the problem of thinning without shrinking in 3D. In each
case we estimate the complexity of the generated code, in terms of the average num-
ber of tests on image values. Let usfirst recall some basic definitions from 2D and
3D digital topology [23, 13, 21, 28].

4.1 Basic definitions of digital topology

A 2D (respectively 3D) digital image ¥ is asubset of Z? (resp. Z?%). A pointz € ¥
isdefined by itscoordinates (z1, z5) (resp. (x1, 22, x3)). We consider two distances:

1=2 (resp.3)

Di(z,y) = > |lyi—wi] and

=1
Doo(z,y) = i:l..r.gl?fésp.?:) | vi =i
and the associated neighborhoods:
Bi(z) = {y[Di(z,y)<r}  and
Bl (z) = {y|D(z,y) <7}

The common neighborhoods are:

in2D | 4-neighborhood: N4( B
8-neighborhood: Ng(z) = B (z)
in3D | 6-neighborhood: Ng( B
26-neighborhood: Nog(z) = BL ()
18-neighborhood: N;g(

We define N*(z) = N, (z) \ {z}. Two points z and y are said to be n-adjacent
if y € N(z). Wecall the points of N (x) the 6-neighbors of z.

A binary image ¥ is defined by a binary partition of ¥ into X and X such that
XNX=0and XUX =3%. Wecdl X theobject and X the background.

A n-path between two pointsz and i of X (resp. X) isasequence zy, . . . z;, of
pointssuch that z; € X (resp. X), o = z, 2, = vy, and x;_; is n-adjacent to z;
fori = 1...k. A subset of X (resp. X) is said to be n-connected if a n-path can
be found between each pair of points of X (resp. X). A n-connected component
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Fast Binary Image Processing Using Binary Decision Diagrams 13

of X (resp. X) isasubset of X (resp. X) which is n-connected and maximal for
inclusion.

To preservetopological consistency, we haveto consider different connectivities
for the object and the background [ 13]. We respectively denotethem by n and 7. We
consider herethat (n,7) = (8,4) in2D and (n, ) = (26,6) or (6,26) in 3D.

4.2 Simple point

A simple point is apoint whose removal does not change the topology of the binary
image. The detection of such pointsis the keypoint of all thinning algorithms [13,
14], thus optimizing this detection is of high interest in computer vision and image
processing. The detection and the characterization of 2D simple points has been al-
ready widely studied. Due to the simplicity of the two-dimensional problem, seve-
ral very efficient implementations have been proposed. Because of new 3D ima-
ging modalities (e.g., medical imaging), the study of the 3D case is becoming more
and more important. It is also much more complex. Morgenthaler [20] proposed
afirst characterization of 3D simple points by using 4 local conditions. Tsao and
Fu[29, 13] proposed a simplified form which requires 3 local conditions. Recently,
characterizations with only 2 local conditions has been found [19, 4, 25].
Thislast characterization [4] isbased onthe cal cul ation of two numbers of connec-

ted components (we consider that the object is 26-connected while the background
IS 6-connected):

(zissimple) <= (NCCay[X N Ny5(2)] = NCCG[X N Nig(2)] =1)  (3)

NCCy[X N Njs(x)] denotesthe number of 26-connected components (26-adjacent
to x) of the object X in Ny, (), while NCCs[X N Nj;(x)] denotes the number of
6-connected components (6-adjacent to x) of the background X in N (x).

In the remainder of thissection, wefirst present the results obtained inthesimple
case of detecting 2D simple points. The interest in this case is more to demonstrate
the code generation process on awell-known, simple example. Then, we present the
results obtained on the detection of 3D simple points, and the problem of thinning
in3D.

RR n’3001



14 Luc Robert, Grégoire Malandain

4.3 Simplepointsin 2D

Indexed from O to 7, the neighbors of a pixel are considered in the following order:
NW, N, NE, W, E, SW, S, SE (i.e. fromleft to right, lines being considered from top
to bottom). Figure 4 representstheinitial —small, but not efficient — procedure used
for BDD generation. The generated BDD is represented in figure 5. The C-code
procedures automatically generated using the two different strategies presented in
section 3.2 are displayed in figures 6 and 7. The generated code has a minimal size
over all the potential variable orderings. Indeed, by computing all the 8! BDD’s cor-
responding to all variable permutations, we checked that the variable order obtained
by applying the sifting minimization algorithm actually corresponds to a global mi-
nimum for the number of nodes. Note that this exhaustive search was possible only
because of the small number of variables.

Intable 1, we compare the numbers of tests performed by theinitial function and
by the generated code. Both procedures were run on the 28 potential configurations
of theinput values. The table displays, for each number of tests, the corresponding
number of configurations.

number of tests 4 | 516 |7 (8|9 |12| average
initial function (fig.4) | 16 |64 (3264|064 |16 | 7.00
BDDsfunction (fig. 6) | 144 |64 | 32| 8 | 8 4.72

Table 1: 2D simplicity test: comparison of the initial function with the generated
code.

4.4 Detecting simple pointsin 3D

In[3], aboolean characterization of 3D simple pointsisgiven, which uses 4 boolean
conditions based on local topological numbers.

A straightforward implementation of this characterization was then used to ge-
nerate, using the “brute-force” approach (cf section 3.1.2), aBDD representing the
function which returns TRUE if and only if the point is asimple point.

Computation took several hours on a Sun Sparc 20. As aresult, we obtained a
BDD with 1007 nodes. Using the sifting minimization agorithm, wereduceditssize

INRIA
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int is_sinmple_2D initial (const int *V) {
int nb_cc = 0;

if ('V[1] ) { nb_cc ++; if ( !V[4] && !'V[2] ) nb_cc --; }
if ( 'V[4] ) { nb_cc ++; if ( 'V[6] & !'V[7] ) nb_cc --; }
if ('V[6] ) { nb_cc ++; if ( 'V[3] & !V[5] ) nb_cc --; }
if ( 'V[3] ) { nb_cc ++ if ( 'V[1] & & 'V[O] ) nb_cc --; }
if ( nbcc==1) return( 1); else return( 0);

Figure 4: Theinitial, small but not efficient, function used for code generation

Figure 5: The BDD produced after optimization of the number of nodes through
variable reordering. The THEN (resp. ELSE) edges are labeled by 1 (resp. 0). The
sign indicates the type of the edge (cf section 2).

RR n’3001



16 Luc Robert, Grégoire Malandain
int is_sinple_2D BDD_1 (const int *V) {
int R=0;
L993: if (VAL(V,3)) {goto L929;} else {goto L656;}
L929: if (VAL(V,1)) {goto L641;} else {goto L896;}
L641: if (VAL(V,4)) {goto L305;} else {goto L528;}
L305: if (VAL(V,6)) {goto LO81;} else {goto LO8O;}
L528: if (VAL(V,6)) {goto LO80;} else {goto L337;}
L337: if (VAL(V,7)) {goto LO81;} else {goto LO8O;}
L896: if (VAL(V,4)) {R=(!R);goto L305;} else {goto L625;}
L625: if (VAL(V,2)) {goto LO81;} else {goto L528;}
L656: if (VAL(V,1)) {goto L832;} else {goto L705;}
L832: if (VAL(V,4)) {goto L864;} else {goto L545;}
L864: if (VAL(V,5)) {R=(!R);goto L305;} else {goto LO8O;}
L545: if (VAL(V,5)) {goto LO81;} else {goto L849;}
L849: if (VAL(V,6)) {goto LO081;} else {goto L337;}
L705: if (VAL(V,0)) {goto L961;} else {goto L352;}
L961: if (VAL(V,4)) {goto LO081;} else {goto L609;}
L609: if (VAL(V,2)) {goto LO81;} else {goto L545;}
L352: if (VAL(V,4)) {goto L864;} else {goto L769;}
L769: if (VAL(V,2)) {goto L545;} else {goto L560;}
L560: if (VAL(V,5)) {goto L528;} else {R=(!R);goto L849;}
L080: return !'R

L081: return R;

Figure 6: Function generated using the first scheme (see text).

to 503 nodes. Using the second strategy presented in section 3, we generated a 1500-
linepiece of C-code. Wethen compared the generated codeto theinitial oneinterms
of computational time, by evaluating the function over all the potential variable (229)
assignements.

A first comparison between the straightforward implementation of the boolean
characterization and the generated code is given in table 2. Histograms of the num-
bers of tests are given in figure 8. Table 3 shows the average time required for one
function evaluation on several architectures.

minimum average maximum
number of tests | number of tests | number of tests
bool. charac. of [3] 6 111.41 176
bool. func. (BDDs) 6 8.71 26

Table 2: Comparison of the generated code with the boolean characterization of [3]

for the 3D simplicity test over the 22¢ potential neighborhoods.
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int is_sinple_2D BDD 2 (const int *V) {

int R=0;
it (V3] )
it (V1)
it (V4] )
return ( V[6] ? R: !R) ;
el se

LblO: if ( V[6] )
return ( 'R) ;
el se
return ( V[7] ? R: IR) ;
el se
it (V4])
return ( V[6] ? IR: R) ;
el se
it (M2])
return ( R) ;
el se
{ goto LblO; }
el se
it (V1)
it (V4] )
Lbl1: if ( V[5] )
return ( V[6] ? IR: R) ;
el se
return ( 'R) ;
el se
Lbl2: if ( V[5] )
return ( R) ;
el se
Lbl3: if ( V[6] )
return ( R) ;
el se
return ( V[7] ? R: IR) ;
el se
it (M0])
it (V4] )
return ( R) ;
el se
it (v2])
return ( R) ;
el se
{goto Lbl 2;}
el se
it (V4 )
{goto Lbl1;}
el se
it (M2])
{goto Lbl2;}
el se
it (M5])
{goto LblO;}
el se
{R= 'R goto Lbl3;}

Figure 7: Function generated using the second scheme (see text).
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Machine characteristics Time (usec)
SUN Ultral Sparc, 167MHz, SUNOS5.5 0.211
Gl Indy P22, 150MHz, IRIX5.3 0.45
DEC Alpha 3000, 166MHz, OSF1V3.2 0.276

Table 3: Average time for one function evaluation (see text).

15000000.0 -

6000000.0

10000000.0 -
4000000.0

5000000.0 -
2000000.0

It

L
0.0 10.0

Figure 8: Histograms of the numbers of tests needed to evaluate the 3D simplicity
test over the 226 possible neighborhoods. Left: boolean characterization [3]. Right:
code produced using BDD’s.
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4.5 Thinning in 3D: first method

Thinning abinary image consists of deleting simple pointswhich are not end points.
In general, from the implementation standpoint, the two tests are performed sequen-
tially. For instance, the del etion condition described in [2] relies on the boolean cha-
racterization described in [3] and an extra condition which tellsif the simple point
isan end point. Thisnew constraint increases the number of tests (compare tables 2
and 4, and |eft histograms of figure 8 and figure 9).

It turns out that the corresponding BDD is much smaller than the one compu-
ted in the previous section (only 272 nodes), which in turn decreases the number of
tests performed by the generated code. Thislast result isillustrated by table 4: the
minimum, average and maximum numbers of tests to decide whether a point can be
deleted are significantly smaller than for simple point detection.

minimum average maximum
number of tests | number of tests | number of tests
deletion cond. of [2] 30 114.10 176
bool. func. (BDDs) 2 5.16 25

Table4: Comparison of the generated code with the deletion conditions[2] over the
226 possible neighborhoods.

4.6 Thinningin 3D: second method

For efficiency, some 3D thinning algorithms do not use directly the 3D simplicity
test, but only sufficient —and computationally simpler — conditions. After these suf-
ficient conditions have been checked, an additional condition prevents end points
from being deleted.

The parale thinning algorithm described in [11] is one of these. At each itera
tion, the algorithm updates all the voxel valuesin parallel. Each iteration isdivided
into six stages. Each stage detects border points aong one of the 6 directions (N, S,
E, W, Up, Down) and checksif these points can be deleted. Five conditionsare pro-
posed in [11] for performing the test. Since these conditions are easily expressed in
terms of boolean expressions, we generated the BDD using the method described in
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Figure 9: Histograms of the numbers of tests involved in checking the deletion
condition over the 226 possible neighborhoods. Left: boolean characterization [2].
Right: code produced using BDD'’s.

section 3.1.1. We compare here the direct, straightforward implementation of these
5 conditions and the corresponding code generated using BDD’s. The results are
presented in table 5 and figure 10.

minimum average maximum
number of tests | number of tests | number of tests
deletion cond. of [11] 1 4.83 56
bool. func. (BDDs) 1 3.27 26

Table 5: Comparison of the generated code with the deletion conditions [11] over
the 226 possible configurations.

5 Conclusion and futurework

This article describes an approach for automatically generating efficient code for
region-based binary image processing agorithms. Inspired from techniques used
in digital system design, this approach can be applied to any binary image proces-
sing algorithm which evaluates a discrete function over small regions of the image
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Figure 10: Histograms of the number of tests needed to determine if a point can
be deleted [11] over the 22¢ possible configurations. Left: direct implementation.
Right: code produced using BDD'’s.

(e.g., discrete morphological and topological operations). Given adescription of the
function in terms of either boolean formulae or acompiled module, it automatically
produces a program which implementsthe function. The generated C source codeis
portable and compact. It isalso very efficient: at each stage of itsexecution, the pro-
cedure is guaranteed to examine only the pertinent input data, i.e., the values which
affect the result. For each such value, it performs at most one test, one branching
and one binary register operation.

We applied our method to several binary image processing tasks, such asthe 2D
and 3D simplicity tests, and two different 3D thinning processes. In each case, we
produced functions more efficient than the previously optimized implementations,
reducing the execution time by afactor of up to 20.

There remain anumber of directionsstill to be explored. First, there exist many
other image processing applications in which the technique described in this paper
can be directly applied (edges tracking, classification of corners and junctions, etc).
Second, more efficiency can be reached by studying more carefully the distribution
of the incoming data (depending on the type of images or or the algorithm) and ta-
king it into consideration when optimizing the BDD. Third, a better knowledge of
the variousefficient data structuresused in digital design would probably help us ad-
dress other image processing tasks, or deal with other kinds of images (grey-level,
floating-point).
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We are convinced that there remainsalot to gain in bringing the power of struc-
tures such as BDD’s to the domains of computer vision and image analysis.
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