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Abstract: The IDEA block cipher is a symmetric-key algorithm which encrypts 64-bit plaintext blocks to 64-bit
ciphertext blocks, using a 128-bit secret key. The security of IDEA relies on combining operations from three
algebraic groups: integer addition modulo 2", bitwise exclusive or of two n-bit words, and integer multiplication
modulo (2™ 4 1) which is the critical arithmetic operation of the block cipher. In this paper, we investigate three
algorithms based on a small multiplication with a subsequent modulo correction. They are particularly well suited for
the latest FPGA devices embedding small multiplier blocks, like the Virtex-II family. We also consider a multiplier
based on modulo (2" + 1) adders. Several architectures of the IDEA block cipher are then described and compared
from different point of view: throughput to area ratio or adequation with feedback and non-feedback chaining
modes. Our fastest circuit achieves a throughput of 8.5 Gb/s, which is, to our knowledge, the best rate reported in
the literature.
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Multiplication modulaire pour I'implantation sur FPGA de l’algorithme
de cryptage par bloc IDEA

Résumé : IDEA est un algorithme de cryptage & clef privée transformant un bloc de 64 bits de texte en clair en
un bloc de 64 bits de texte chiffré. La sécurité de IDEA repose sur la combinaison d’opérations dans trois groupes :
Paddition modulo 2", le ou exclusif bit & bit de mots de n bits et la multiplication modulo (2" + 1). Cette derniére
est I'opération arithmétique critique d’IDEA. Dans cet article, nous étudions trois algorithmes exploitant de petites
multiplications suivies d’une correction. Ils sont particuliérement bien adaptés aux circuits FPGA récents contenant
de petits multiplieurs, comme la famille Virtex-II. Nous considérons également un opérateur basé sur des additions
modulo (2" + 1). Plusieurs architectures d’un processeur IDEA sont ensuite décrites et évaluées de différents points
de vue : relation entre la surface et le débit ou adéquation avec les divers modes de chainage. Notre circuit le plus
rapide atteint un débit de 8.5 Gb/s, ce qui est & notre connaissance le meilleur résultat publié a ce jour.

Mots-clé : Arithmétique des ordinateurs, multiplication modulo (2™ + 1), IDEA, cryptographie, FPGA
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1 Introduction

The IDEA (International Data Encryption Algorithm)
block cipher [8] is a symmetric-key algorithm which
encrypts 64-bit plaintext blocks to 64-bit ciphertext
blocks, using a 128-bit key K. IDEA consists in
8 computationally identical rounds followed by an
output transformation (Figure 1). Round r (1 < r < 8)
transforms a 64-bit input into four 16-bit output blocks
forming the input of the next round. The computation
involves six 16-bit subkeys KZ-(T) (1 < i < 6) derived
from K. The output transformation, employing four
additional subkeys Ki(g) (1 < i < 4), produces the
ciphertext. The security of IDEA relies on combining
operations from three algebraic groups. The three
group operations on n-bit words x and y (n = 16) are:

e Integer addition modulo 2" (denoted by z H y).
e Bitwise exclusive or (denoted by z @ v).

e Modified integer multiplication modulo (2" + 1),
with 0 € Zy» associated with 2" € Z3, | (denoted
by z®y). If 2 = 0 or y = 0, we replace it by 216. If
the result of the multiplication is 219, it is replaced
by 0.

Decryption is achieved using the same algorithm with
the ciphertext provided as input. The only difference
lies in the key schedule generating the K Z-(T) coefficients.

IDEA encrypts plaintext in fixed-size 64-bit blocks.
However, messages will often exceed 64 bits and
a simple solution, known as Electronic Codebook
(ECB) mode, consists in partitioning the plaintext
into 64-bit blocks and encrypting each independently.
This ECB mode has however a drawback in the
sense that identical ciphertext blocks imply identical
plaintext blocks and is therefore discommended if the
secret key is reused for more than one message. More
sophisticated chaining modes bring a solution to this
problem. For instance, in the Cipher Block Chaining
(CBC) mode, a feedback mechanism causes the jth
ciphertext block to depend on the first j plaintext
blocks and an n-bit initialization vector. Since the
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entire dependency on preceding blocks is contained
in the previous ciphertext block [12], all blocks must
be processed sequentially!. This property forbids to
pipeline the computation path and implies a slightly
different hardware architecture of the block cipher
with a lower throughput. The counter (CTR) mode,
a non-feedback mode described for example in [5],
could remedy the situation if it becomes a standard
as recommended in [10]. It is also possible to pipeline
the processor in feedback modes if we accept the
decomposition of the data stream into d separately
encrypted messages, where d is the pipeline depth [4].

Multiplication modulo (2" + 1) is the critical arith-
metic operation of this block cipher: both area and
speed of an IDEA processor are strongly related to the
hardware operator carrying out  ® y. The main pur-
pose of this paper is to design efficient arithmetic opera-
tors for FPGA based implementations of IDEA. After a
brief overview of Virtex-E and Virtex-II FPGA families
(Section 2), we investigate four algorithms dedicated to
the ® operator (Section 3). In order to easily compare
several architectures, we have developed a tool which
generates the synthesizable VHDL code of an IDEA
processor. Several parameters allow us to choose one of
the multipliers described in Section 3 and the latency of
the three operators ®, H, and @ (respectively denoted
by «, 3, and v on Figure 1). We describe this tool in
Section 4. Finally, Section 5 digests our main results
and compares them with recent works on IDEA.

2 Some Features of the Virtex-E
and Virtex-II Families

This section gives a brief overview of useful features of
Virtex-E and Virtex-II devices for this work. Virtex-E
and Virtex-1II configurable logic blocks (CLBs) provide
functional elements for synchronous and combinatorial
logic. Each CLB includes respectively two (Virtex-E) or
four (Virtex-II) slices containing basically two 4-input
look-up tables (LUT), two storage elements, and fast

LCBC decryption can however be performed in parallel.
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Figure 1: IDEA computation path and its optional
pipeline stages.

carry logic dedicated to addition and subtraction (Fig-
ure 2a).

A Virtex-IT device also embeds many 18x18 two’s
complement multipliers (the MULT18x18 blocks), each
of them supporting two input ports 18-bit signed or 17-
bit unsigned wide. This width is ideal for the implemen-
tation of the modulo (2'¢ + 1) multiplication. Further-
more, each multiplier has an optional internal pipeline
stage. Surprisingly, this feature is poorly documented
in the Virtex-II data sheet and synthesis tools seem un-
able to automatically deal with it. The MULT18x18S
component, available in the library of Synplify Pro, al-

lows us to write multipliers that take advantage of this
characteristic (Figure 2c).

Other FPGA families (ORCA series 4 from Lattice
or Stratix from Altera) also embed small multipliers.
Their width is smaller than 16 and it is therefore nec-
essary to effectively build the required multiplier from
these blocks (see for instance [3]).

e

CLB Slice 3
% Critical path
5] Tiockiq Tmultck Tioock
> — —_— ——
& % [r{FE
2 MULT18x18
i net net

(b) Embedded multiplier

Critical path
Tmultck  Tioock

= . - =
- MULT18x185 =
A
net

(c) Embedded multiplier with
an internal pipeline stage

Second carry chain

(a) Virtex-11 CLB

Figure 2: Virtex-II arithmetic features overview.

3 Modular Multiplication

Designing an area-time efficient modulo (2" + 1) mul-
tiplier is the key point of the hardware implementa-
tion and depends on the target FPGA resources. The
first three algorithms involve small multipliers and are
thus particularly dedicated to Virtex-II devices (para-
graphs 3.1 to 3.3). We also consider a multiplier based
on modulo (2" 4 1) adders (paragraph 3.4) proposed by
R. Zimmermann for VLSI implementations [14]. Such
an operator requires only LUTs and could be an inter-
esting alternative for the Virtex-E family.

INRIA
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3.1 Low-High Algorithm

The Low-High algorithm was originally described by the
designer of the IDEA block cipher [8]. This algorithm,
defined by Equation (1), provides the programmer with
a tool to perform modulo (2" + 1) multiplication when
T,y € Linyq-

rymod 2™ — xydiv2™ 42" + 1
if xy div2™ > zymod 2",
rzymod 2™ — xy div 2"
if xy div2™ < xymod 2.

rOYy = (1)

However, the cases where + = 0 or y = 0 must be
handled separately. Note that

(2" - j)mod (2" + 1) = (—j)mod (2" + 1)
=2"4+1-4, (2)

where 1 < j < 2". Assume now that y = 0: due to this
special encoding of 2", Equation (2) becomes

1 ifx =0,
TOYy=40 ifx=1,
2" +1 —x otherwise.

Consequently,

{@”+1—ﬂﬂnde1ify=O,
rTOY = .
(2" +1—y)mod2™ ifx=0.

Figure 3 depicts the hardware architecture of a
modulo (2" 4 1) multiplication operator based on the
Low-High algorithm. It primarily consists in an n x n
unsigned multiplier and a modulo (2" + 1) subtracter
whose inputs ¢z and cy are selected by a multiplexer
depending on z and y:

(2" +1—2x)mod2™ ify=0,
c =< (2" +1—y)mod2™ ifz=0, (3)

xymod 2" if x #0and y #0,
and
0 if y=0,
e =20 if z =0, (4)

xydiv2™ if x #0 and y # 0.

RR n~ 4558

Replacing (3) and (4) in (1) yields
x@y:{(chHJrl)modZ" ?ch>cL, )
(chcH)m0d2” if CH SCL.
Our VHDL generator allows the user to shorten the crit-
ical path by inserting pipeline stages in the multiplier
(integer parameter my), after the subtracter (boolean
parameter ms), and after the final adder (boolean pa-
rameter ms). The parameter m; € {0,1,2, 3} requires
further explanations. Since MULT18x18 blocks are not
available in Virtex-E devices, the 16 x 16 multiplier is
implemented in logic (CLBs and fast carry logic). Syn-
thesis tools are generally able to pipeline automatically
such a circuit by moving m; register stages into the mul-
tiplier. Therefore, up to three pipeline stages are avail-
able in our implementation. Since the small embedded
multipliers of Virtex-II devices have an optional internal
pipeline stage, m; is equal to 0 or 1 for this family.

wel ] n Latency: o =m1+ m2+ m3
x!=0

y_>>< v=0| Modulo 2" subtracter
” T Modulo 2" adder
S o
g -
5=
S
o 1™
% el "=°] gm1=0, 1, 2or 3 pipeline stages
s * () m2 and m3 =0 or 1 pipeline stage

Figure 3: Modulo (2" + 1) multiplier based on the Low-
High algorithm.

Example 3.1
Let us illustrate the behavior of this circuit for some
examples:

e Forx =y =0, we have c;, = 1 and cg = 0. As
cg<cp,xOy=cr—cg=1.
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e Forx =0 and y =1, we have ¢, = cyg = 0 and
xOy = 0. Since the value 2™ is replaced by 0, this
result is correct (2™ mod (2" 4 1) = 2").

e For x = 10 and y = 9, we obtain c;, = 90 and
cg=0. Ascyg <cp,x®Oy=cr —cyg =90.

e For x = 16384 and y = 8, we have c;, = 0 and
cg = 2. Consequently, t ©y = (cp — ey +
1) mod2™ = 65535.

3.2 Low-High Algorithm Revisited

As described above, the Low-High algorithm involves
inter alia the comparison of two 16-bit integers and two
subtractions. A clever rewriting allows us to get rid
of the subtractions at the price of a larger multiplexer
and to remove the comparator. Assume that x and
y€{l,...,2" —1}. We have

rymod 2™ > xydiv2"
< xymod 2" — zydiv2"” >0
< rymod 2" + 2" — xy div2™ > 2"

< rymod 2" + xydiv2™ + 1 > 27, (6)
and
(zymod 2" — xy div2"™) mod 2"

= (zymod 2" + 2" — zy div2") mod 2"
= (zymod 2" + zy div2™ + 1)mod 2". (7)

Replacing (6) and (7) in (5) yields

(rymod 2™ + zy div2" + 1) mod 2"
if zymod 2™ + xydiv2™ 4+ 1 > 2™,

(xymod 2" 4+ xy div 2™ + 2) mod 2"
if zymod 2™ + zydiv2™ 4+ 1 < 2™,

rOYy =

and the comparator is no longer necessary. The removal
of the two subtracters is straightforward: we rewrite

Equations (3) and (4) as

0 ifx#0andy=0,
0 ifx=0andy#0,
cr =
R if 2 =0andy =0,
rymod 2™ otherwise,
and
x ifx#£0and y=0,
y ifx=0and y#0,
cyg =
0 ifxr=0and y=0,

zydiv2™ otherwise.

Figure 4 illustrates the corresponding hardware oper-
ator (the parameters my, mo and mg3 are identical to
those described in Section 3.1).

X Latency: o =m1+ m2 + m3
U it
1

Modulo 2" adder

Yy &"0..0"

most significant bit

x&"0..0"

g m1=0,1, 2or 3 pipeline stages
() m2 and m3 = 0 or 1 pipeline stage

ml

Figure 4: Modulo (2" 4 1) multiplier based on the mod-
ified Low-High algorithm.

Example 3.2
Let us illustrate the behavior of our second circuit for
the examples already studied above:

e Forx =y =0, we have c, = 1, cg = 0, and
cg=2"—1. Ascr+cg+1=2"+1, 20y =
2" +1)mod2™ = 1.

o Forx =0andy=1, wehavecy, =0,cgy =y =1,
and cg = 2™ — 2. Consequently, c;, +cg +1 =
2"—1 and 2Oy = (cL+¢a+2) mod2™ = 0. Since
the value 2™ is replaced by 0, this result is correct.

INRIA
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e Forx =10 andy =9, we obtain c;, =90, cy =0,
andcg = 2" —1. Ascp +cg+1 =90+ 27,
x®y=(cy +<cg+1)mod2™ = 90.

o For x = 16384 and y = 8, we have ¢, =0, cy =
2, and cg = 2" — 3. Consequently, c;, +¢g + 1 is
equal to 2" — 2 which s strictly smaller than 2"
and 2Oy = (e +cg +2) mod2™ = 2™ —1 = 65535.

3.3 (n+1)x(n+1) Multiplier Based Op-
erator

The operator depicted on Figure 4 still comprises a mul-
tiplexer to handle the special cases where z = 0 or
y = 0. We describe here how to treat correctly these
cases with an (n+1) x (n+ 1) multiplier. Let us define
two (n + 1)-bit integers & and ¢ such as

xr =
277/

g=17
2n

Modulo (2" + 1) multiplication is then expressed as

fl<z<2® -1
ifx=0

and
fl<y<2m—1
ify=0

Zgmod (2" + 1)
= (M +2"D) mod (2" + 1)
n—1
— <M +dp 2% 42" Z di2i> mod (2" + 1), (8)
1=0

where
M =ijmod2" and D =Zzjdiv2" =) d;2"
1=0

Substituting
2"mod (2" +1) = (—1)mod (2" + 1)
and
22" mod (2" + 1)
= ((2"mod (2" 4+ 1)) - (2" mod (2" + 1))) mod (2" + 1)
=((-1)-(-1))mod (2" + 1) =1,

RR n "~ 4558

into (8) yields
#jmod (2" + 1)

n—1
- (M tdn— Y di2i> mod (2" + 1)

=0

n—1
= <M o+ Y di2'+ 2) mod (2" +1). (9)
i=0

Remember now that a modulo m reduction is defined
by

(km <z < (k+1)m) < (xmodm =z —km). (10)

We apply (10) to (9) and obtain a modulo (2" + 1) mul-
tiplication algorithm for (n + 1)-bit integers belonging
to ZE"-"-I:

Fjmod (2" + 1)
n—1
M+ d2'+2-2"—1

=0
n—1

if M+ di2 +2>2"+1
_ =0
n—1
M+Zdi21+2
=0
n—1
if M+ di2 +2<2"+1
=0

n—1
(M + Z d;2" + 1) mod 2"
1=0
n—1

ifM+ZcL-2i+1z2”
- i=0 (11)

n—1
M+ Z d;2t 4+ 2
=0
n—1
if M+ di2' +1<2"
=0

A small modification of Equation (11) is still re-
quired to perform the modified modulo (2™ + 1) multi-
plication of IDEA. Remember that z ©® y = 0 for z =
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O,y=1land x =1,y =0 ((2" - 1)mod (2" + 1) = 2™).
Wehave D = 0, M = 1,and M+3"" | d;2i+1 = 2" 1.

Consequently, when M +Z?;01 d;2°+1 < 2™, we obtain

n—1
rTOy= <M+2Ji2i+2> mod 2"
i=0
0 if (x=0,y=1),
0 if (x=1,y=0),
= n—1
M + Z d;2" +2 otherwise.
i=0

Finally, for z = y = 0, we have d,, = 1, M = 0, and
d; = 0 Vi # n. Therefore

n—1 n—1
(M + Z d;2" + 2) mod 2" = (Z 2l 4 2) mod 2"

i=0 i=0
=(2"+1)mod2" =1
=r0y.

We obtain the modulo (2" + 1) multiplication operator
described by Algorithm 3.1 and illustrated on Figure 5.

Latency: o =ml + m2 + m3

(n+1)*ﬁn+1)
multiplier 0
Modulo 2" adder

< x
5o
o
(xy) mod m

g m1=0,1, 2 or 3 pipeline stages
(Jm2 and m3 = 0 or 1 pipeline stage

Figure 5: Modulo (2" + 1) multiplier based on an (n +
1) x (n + 1) multiplier.

Example 3.3
Let us illustrate the behavior of this third circuit for our
four examples:

Algorithm 3.1 Modulo (2" + 1) multiplication.
1: if z =0 then
2 T 2"
3: end if

4: if y = 0 then

5: oy« 2"

6

7

8

: end if
: M — zymod 2™ (n-bit integer)
: D «— xydiv2™ ((n+ 1)-bit integer)

n—1
9: if (anandM+ZJi2i+1<2"> or (d, =

i=0
1) then
100 QY <M+§di2i+2> mod 2"
11: else :12_01
12: x®y<—<M—|—Zdi2i+1> mod 2™
13: end if o
e For + = y = 0, we haowve M = 0,

dy = 1, and d; = 0 Vi # n. We obtain
T Oy = (M+Z?:—olc?i2i+2) mod2" =
(2" + 1) mod2™ = 1.

o For v = 0 andy = 1, we have M = 0, do
1, and d; = 0 Vi # 0. As M + >0 d;2
1 = 2™ — 1, the product is defined by x © y
(M + Y g 4 2) mod2" = 2" mod2™ = 0.

=+

e Forx =10 and y =9, we obtain M =90, D =0,
and M + 37" d;20 +1 = 2" +90. Consequently,

voy=(M+ LI di2i+1) mod2" = 9.

e Forxz =16384 andy = 8, we have M =0, D = 2,
and M + Y1 di2 +1=2" —2. 2@y is then
equal to (M + Z;:Ol d; 2" + 2) mod2" =2"—1 =
65535.

A very close architecture has been published in 1991
by Curiger et al. [4]. Instead of the not zor gate, they

INRIA
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use an or gate to compute the input carry of the second
adder. This operator seems however mistaken. For in-
stance, if t = y = 1 we have xry mod 2" = 1, xy div2" =
0, and

2" iv2n +1=100...001.
xymod 2" 4+ xy div 2" 4 00...00

(n—1)x

The output carry of the first modulo 2" adder is there-
fore equal to one and we obtain

zymod (2" +1) = (1 4+ 1)mod 2" =2

which is clearly wrong. This error occurs for several
other input values.

3.4 Carry-save Adder Based Architec-
ture

R. Zimmermann has proposed modulo (2" £ 1)
multiplication operators using modulo-reduced partial
products, modulo carry-save adders, and a modulo
final adder [14]. Modulo (2" + 1) multiplication is
defined by:

zymod (2" + 1)

- <n+2+nz_:PPi> mod (2" + 1), (12)

=0

where

PP; =x;  Yn—i—1 " YolYn—1"* Yn—it+
Zi-0---01---1. (13)

Figure 6 depicts the architecture of this modulo (2" +
1) multiplier and its four optional pipeline stages. A
first stage implements Equation (13) to compute the 16
modulo-reduced partial products. Modulo (2" +1) mul-
tiplication is then carried out by summing these terms
and the constant 2 with n modulo (2™ 4 1) adders. Re-
member that this operation can be realized by an end-
around-carry adder with ci, = Cout:

(a+b+1)mod (2" + 1) = (a + b + Cout) mod 2™. (14)

RR n "~ 4558

Note that this operator computes the sum a + b in-
creased by one. Since the circuit on Figure 6 involves n
modulo (2" + 1) additions, the term n found in Equa-
tion (12) is automatically summed.

As the value 2" is represented by 0, a 2" correc-
tion unit is required to handle these special cases. R.
Zimmermann has defined

(Y
(C*,8) =4 (X
(0)

) if X =2"andY #2",
) if X #£2"and Y =27,
0) fX=Y=2"

1
1

)
)

A multiplexer selects the input of the final modulo (2" +
1) adder according to x and y. Note that R. Zimmer-
mann has designed an end-around-carry parallel-prefix
adder structure to perform this last addition. Prefix
adders are however rather inefficient for current FPGA
devices and our final modulo (2" + 1) is based on the
following rewriting of Equation (14):

(a+b+1)mod (2" +1) =

(a+b+1)mod2™ ifa+b>2"
a+b ifa+b< 2™

() 0 or 1 pipeline stage 2

Latency: o =ml1 + m2 + m3 + m4
m1 3

X L S = 5
=8 T8
E T a1
s - < :
S N o H
o - ~> i
oz o8 i
=) - = i
3 = ;E
S5 SE =3
y S5 > =8 =]
bt CE
P
>
3
= <
» 2
k1
I
S
S
N

Modulo (2"+1) adder

Figure 6: Modulo (2" + 1) multiplier based on R. Zim-
mermann’s algorithm.
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3.5 Comparison of the four algorithms

Table 1 summarizes the main specificities (area and de-
lay) of the four algorithms described above for several
sets of parameters. The VHDL code was automatically
generated, synthesized using Synplify Pro 7.0.3, and im-
plemented on Virtex-E and Virtex-II devices employing
Xilinx Alliance Series 4.1.03i.

For Virtex-II devices, the third modulo (2" +1) mul-
tiplication algorithm allows a significant gain in terms of
slices compared to the two Low-High algorithms. This
gain is of course less important for Virtex-E devices
where the multiplier is implemented on CLBs and re-
quires the main part of the hardware resources. For
this family, we also observe a significant increase of the
delay between algorithms 2 and 3. This gap is certainly
related to the architecture of the (n+1) x (n+ 1) mul-
tiplier automatically generated by the synthesis tools
(one more stage in the tree summing the partial prod-
ucts). Finally, our experiments show that the best set
of parameters is m; = 2, mo = 1, and mg = 1 if we
want to optimize the throughput of the ® operator.

The carry-save adder based operator leads to the
largest and slowest circuits. Since there is no carry
propagation in carry-save adders, synthesis tools don’t
use dedicated carry logic lines and allocate two LUTs
to build a full adder cell. A very low-level VHDL de-
scription allows us to take advantage of this carry logic
and therefore to reduce the area. However, the routing
becomes more complicated and induces an increase in
the critical path. These results tend to establish that
algorithms intended for ASICs are not always adapted
to FPGAs.

4 Architectures of an IDEA pro-
cessor

Now that we have efficient modulo (2" + 1) multipliers,
the design of a cipher round is straightforward: integer
addition modulo 2™ takes advantage of fast-carry logic
and LUTs implement bitwise exclusive or. In order to
shorten the critical path, each operator has a paramet-

ric number of internal pipeline stages (Table 2). Our
VHDL generator automatically adds registers in each
round in order to correctly synchronize the data ac-
cording to these parameters (Figure 1). Furthermore,
our tool is able to insert registers on the boundaries
between two successive rounds.

Table 2: Number of internal pipeline stages of the three
group operations.
®©

Algo 1, 2, and 3 | Algo 4

| «€{0,...,3} [a€efo,...., 4 [ Be{0,1} | y€{0,1} |

B 2]

== Pipeline stage ‘_
— Optional pipeline stage -
1
RO 1
' i Round 1 :!:
[ Roundl || [ Round2 || | Round4 | %
[
]
| Output round | | Output round | | Output round | | Output round |

(a) 1+1 rounds (b) 2+1 rounds (c) 4+1 rounds (d) 8+1 rounds
Figure 7: Four architectures suitable for an IDEA pro-

Cessor.

Figure 7a depicts a basic hardware architecture
made up of one round, the output transformation,
a register, and a multiplexer. A plaintext block is
supplied to the circuit through the multiplexer, the
first round of IDEA is evaluated, and the result is
stored in the register, whose content is then fed back
to the hardware round. If the round is implemented
as a combinational circuit (i.e. o = 8 = v = 0), this
basic iterative architecture is tailored to feedback
chaining modes like CBC: only one plaintext block is
encrypted at a time and we can provide a new input
block after nine clock cycles (eight rounds and the
output transformation). Let f denote the clock rate of
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Table 1: Comparison of the four modulo (2" + 1) multipliers for Virtex-E and Virtex-II devices.

Device Algorithm m; | mg | m3 | my | Slices Ila\iloltzllts D[:ll:iy
XC2V40-6 Low-High 0 0 0 - 66 1 15.7
XC2V40-6 Improved Low-High 0 0 0 - 48 1 15.9
XC2V40-6 (n +1) x (n + 1) multiplier oo o | - 25 1 15.8
XC2V250-6 | Carry-save adder based architecture | 0 0 0 0 393 0 15.7
XC2V40-6 Low-High 1 1 1 75 1 6.9
XC2V40-6 Improved Low-High 1 1 1 - 58 1 7.1
XC2V40-6 (n+1) x (n + 1) multiplier 1 1 1 - 25 1 6.3
X(C2V250-6 | Carry-save adder based architecture | 1 1 1 1 474 0 6.9
XCV100E-6 Low-High 0 0 0 - 241 - 24.7
XCV100E-6 Improved Low-High 0 0 0 - 204 - 24.3
XCV100E-6 (n+1) x (n+ 1) multiplier 0 0 0 - 178 32.1
XCV100E-6 | Carry-save adder based architecture | 0 0 0 - 392 - 31.1
XCV100E-6 Low-High 1 1 1 - 241 - 15.4
XCV100E-6 Improved Low-High 1 1 1 - 226 - 15.2
XCV100E-6 (n+1) x (n + 1) multiplier 1 1 1 - 177 - 22.5
XCV100E-6 | Carry-save adder based architecture | 1 1 1 1 466 - 11.9
XCV100E-6 Low-High 2 1 1 - 325 - 10.9
XCV100E-6 Improved Low-High 2 1 1 - 318 - 10.8
XCV100E-6 (n+1) x (n+ 1) multiplier 2 1 1 - 305 - 15.2
XCV100E-6 Low-High 3 1 1 - 371 - 11.0
XCV100E-6 Improved Low-High 3 1 1 - 365 - 10.8
XCV100E-6 (n +1) x (n + 1) multiplier 3| 1| 1| - | 314 - 14.6

RR n "~ 4558
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this IDEA processor; its throughput is then defined by

plaintext block size
#rounds

ThroughPUt(1+1),feedback =
64
=9

Note that for a non-feedback chaining we can provide
a new block as soon as the preceding one enters the
output transformation (i.e. after eight clock cycles).
The throughput is then

ThrOUghPUt(1+1),non-feedback =8f.

Figures 7b and 7b illustrates two architectures with
partial loop unrolling. For combinational rounds, the
critical path increases proportionally to the number of
unrolled rounds. This approach is therefore not recom-
mended for feedback chaining modes. After insertion
of pipeline stages, it achieves good encryption rates (in
non-feedback modes) on small devices.

Finally, Figure 7d shows an architecture with full
loop unrolling dedicated to high throughput implemen-
tations of the block cipher. The throughput is now

Throughput (s 1) non-feedback = Plaintext block size - f
=64f.

In addition to the IDEA computation path, each pro-
cessor contains a subkey memory implemented on CLBs
(roughly 450 slices) and a control unit. The latter sim-
ply consists in a token associated with each plaintext
block. In addition to indicating the validity of the data,
the token selects the correct subkeys in iterative archi-
tectures.

5 Results

5.1 Experimental Setup

All experiments described in this paper were performed
on a Sun Microsystems Ultra-10 workstation (440 MHz,
1 GB of memory). In addition to the IDEA computa-
tion path, each processor contains a subkey memory

and a token based control unit. Furthermore, all input
and output signals are routed through the D-type flip-
flops available in the Input/Output blocks of Virtex-E
or Virtex-II devices.

The VHDL code was generated by our tools, syn-
thesized using Synplify Pro 7.0.3 and implemented on
Virtex-E and Virtex-II devices employing Xilinx Al-
liance Series 4.1.03i. The required time ranges from 10
minutes (4+1 rounds, (n+ 1) x (n+ 1) multiplier based
operator, XC2V500) to 8 hours (841 rounds, carry-save
adder based operator, XCV2000E).

5.2 Non-Feedback Chaining Modes

Let us study first some architectures designed for non-
feedback chaining modes. Table 3 digests the main
characteristics of IDEA processors performing the mod-
ified modulo (2" 4 1) multiplication with a small mul-
tiplier and a subsequent modulo correction (algorithms
1 to 3). Processors working with the third algorithm
are clearly the most interesting for Virtex-II devices: as
they approximately require 60% of the slices, we can im-
plement a chaining mode or the subkey schedule on the
same FPGA. Note that the pipeline contains 107 stages
on XC2V1000 and XCV1000E devices (8+1 rounds) and
55 stages on XC2V500 devices (441 rounds). Conse-
quently, we should decompose the data stream in 107
or 55 separate messages in order to use these processors
in a feedback mode.

The second algorithm offers the best trade-off be-
tween area and encryption rate on Virtex-E devices. Al-
though adding a fourth pipeline stage in the multiplier
improves frequency, the resulting processor requires a
larger and more expensive device (Table 4). This result
is surprising and probably comes from the retiming al-
gorithm of the synthesis tools. We have modified our
code generator to describe explicitly how the multiplier
is to be implemented. We sum up the n partial prod-
ucts P, = x;y, @ € {0,...,n — 1} with a tree of carry-
propagate adders (Figure 8). The difficulty lies in the
determination of the width of the intermediate sums.

INRIA
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Table 3: Characteristics of our architectures for the three multiplier based ©® operators (no register on boundaries
between two successive rounds, m; =ms =m3 =1, 8 =1, and v = 1).

Device Algorithm Rounds Slices lla\;loucllts D[(;lsziy Ir)]:lltlr[o éﬁ;:]
XC2V1000-6 Low-High 8+1 4345 (94%) 34 8.0 ~ 8.0
XC2V1000-6 Improved Low-High 8+1 4199 (82%) 34 8.1 ~79
XC2V1000-6 | (n+1) x (n+ 1) multiplier |  8+1 3077 (60%) | 34 75 ~ 8.5
XC2V500-6 Low-High 4+1 2905 (94%) 18 7.9 ~ 4.0
XC2V500-6 Improved Low-High 4+1 2436 (79%) 18 8.0 ~ 4.0
XC2V500-6 (n+1) x (n 4 1) multiplier 4+1 1983 (64%) 18 7.7 ~4.1
XCV1000E-6 Low-High 8+1 10024 (81%) - 14.9 ~4.3
XCV1000E-6 Improved Low-High 8+1 9586 (78%) - 14.9 ~4.3
XCV1000E-6 | (n+ 1) x (n + 1) multiplier 8+1 8745 (71%) - 22.9 ~ 2.8

Note that the design of arithmetic operators. The design of new

n—1 n—1
max(2P1 + P) = 2 +2.> 2
j=0 j=0

=2 142-(2"—1)
=ontt pon 3 (15)
Consequently, the sum of two n-bit partial products is
an (n + 2)-bit number. We deduce from (15) that
max = (22 (2Pi43 + Piy2) + (2Pip1 + P))
n + 2 bits n + 2 bits
=2%.(2nfl 4 9n —3) yontl L on 3
— 2n+3 4 2n+2 4 2n+1 + 2n o 15’

which is an (n + 4)-bit number. Our VHDL generator
applies such rules to build the 16 x 16 multiplier. The
new combinational modulo (2" + 1) multiplier requires
183 slices compared to 204 for the primary circuit. The
measured delay of the circuit is 29 ns. The benefit of
this approach is more obvious for sequential operators:
244 slices and 9.2 ns compared to 318 slices and 10.8 ns
for the same latency of four clock cycles. Thanks to this
operator, the IDEA processor with full loop unrolling
fits into one XCV1000E FPGA. This experiment illus-
trates the inefficiency of the actual synthesis tools for

RR n "~ 4558

tools should become an important research field within
the next years.

Finally, the carry-save adder based operator leads
to larger and slower circuits (Table 5).

5.3 Feedback Chaining Modes

Table 6 summarizes the characteristics of some IDEA
processor suitable for feedback chaining modes. As
the rounds are now combinational, the critical path
increases and we obtain very low encryption rates. The
basic iterative architecture (Figure 7a) seems to be
the best one for feedback modes: it requires less slices
than systems with partial loop unrolling and achieves
the same throughput.

5.4 Comparison with other IDEA Pro-
cessors

Table 7 digests results published by some other
researchers. We give here a brief overview of the main
features of these IDEA processors.

1. CryptoBooster (Mosanya et al. [13] and
Beuchat [1]) is a highly modular and recon-
figurable coprocessor taking full advantage of
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Figure 8: Architecture of an 8 x 8 unsigned multiplier.

Table 4: Characteristics of our architectures for the three multiplier based ©® operators on Virtex-E devices (no
register on boundaries between two successive rounds, m; =2, mg =1, mg =1, 8 =1, and v = 1).

Device Algorithm Rounds Slices D[(Iallsz}y p’Il‘l}tlrFélE?;]
XCV1600E-6 Low-High 8+1 12959 (83%) 11.7 ~ 5.4
XCV1600E-6 Improved Low-High 8+1 12375 (79%) | 11.6 ~5.5
XCV1600E-6 | (n+ 1) x (n + 1) multiplier 8+1 11948 (76%) | 18.3 ~ 3.5

current FPGAs and working with a host system
in order to accelerate cryptographic algorithms.
CryptoBooster implements the IDEA block
cipher and two chaining algorithms, namely
ECB and CBC?. Modulo (2" + 1) is carried out
with the Low-High algorithm and the IDEA
core consists in a single round and the output
transformation (Figure 7a). The main drawback
CryptoBooster is the complexity of its control
units: the coprocessor is divided into several
modules responsible for memory management,
communication with the host system, data
encryption, or block chaining. All these modules
communicate together using unidirectional
point-to-point channels. It is therefore possible
to change the encryption algorithm or the block

2This mode slightly differs from the CBC mode described in

the literature: in order to accommodate the latency engendered
by pipelining, the chaining algorithm disposes of ¢ > 1 initializa-
tion vectors.

chaining unit, without modifying any other
module. The main goal of this architecture is to
allow partial reconfiguration of the coprocessor.
Unfortunately, CryptoBooster is less efficient and
much more expensive than an optimized software
implementation.

CryptoBooster IT (Beuchat et al. [2]) is an im-
proved version of CryptoBooster. Thanks to a
simplified control unit and a better implementa-
tion of the modulo (2™ + 1) multiplier, this copro-
cessor embeds four rounds and the output trans-
formation (Figure 7c¢) while shortening the critical
path. For the same price as CryptoBooster, the
throughput is approximately 40 times higher and
outperforms the best software solution.

Leong et al. [9] have proposed a bit-serial architec-

ture enabling the algorithm to be deeply pipelined
to achieve a system clock rate of 125 MHz on

INRIA
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Table 5: Characteristics of architectures involving the carry-save adder based © operator (no register on boundaries
between two successive rounds, m1 =2, my =1, mg=1,my=1,8=1,and y=1).

Device Algorithm Rounds Slices D['::iy prIl‘ll:r[OélEl/:]
XC2V4000-6 | Carry-save adder based architecture 8+1 18537 (80%) 8.2 ~ 179
XCV2000E-6 | Carry-save adder based architecture 8+1 18164 (94%) | 13.8 ~ 4.6

Table 6: Characteristics of our architectures for feedback modes. (a« = 3=~ =0).

Device Algorithm Rounds Slices E)\;Ioucllts D[fllsa]y p']i‘lltlr[o él g?;]
XC2V250-6 Low-High 1+1 1148 (74%) 6 49.4 ~0.14
XC2V250-6 Improved Low-High 1+1 1049 (68%) 6 49.7 ~0.14
XC2V250-6 | (n+ 1) x (n+ 1) multiplier 1+1 920 (59%) 6 50.5 ~0.14
XC2V250-6 Low-High 2+1 1463 (95%) 10 92.9 ~0.14
XC2V250-6 Improved Low-High 2+1 1290 (83%) 10 96.2 ~0.13
XC2V250-6 | (n+ 1) x (n+ 1) multiplier 241 1086 (70%) 10 96.0 ~0.13

a Virtex XCV300-4. Given more resources, this
architecture can be scaled up to achieve higher
encryption rate. The idea simply consists in in-
stantiating multiple IDEA core. The design of a
modulo (2" + 1) multiplier is also based on the
Low-High algorithm.

4. Haenni has studied software implementations of
the IDEA block cipher for Itanium and G4 pro-
cessors [6]. The code was written in assembly
language to benefit from the potential of mul-
timedia instructions. As this software performs
eight separate encryptions in parallel, it has the
same throughput for feedback and non-feedback
encryption modes.

5. Hamalainen et al. have implemented the IDEA
block cipher on a Virtex XCV1000E device [7].
The algorithm proposed by Ma [11] was used to
perform the modified modulo (2™ 4 1) multiplica-
tion. This implementation achieves a throughput
of 6.78 Gb/s with a latency of 132 clock cycles.

RR n "~ 4558

6 Conclusions

We have investigated four algorithms to carry out the
modified modulo (2" + 1) multiplication for the IDEA
block cipher. Since the latest FPGA families embed
multiplier blocks, our operators involve small multipli-
cations and are probably not adequate for VLSI or other
FPGA devices. A series of experiments should be per-
formed to confirm this hypothesis. This is however a
huge work involving the development of new generators.
For instance, the small multipliers should be replaced
by operators optimized for VLSI (i.e. modified Booth
recoding) to obtain a fair comparison.

Several architectures of the IDEA block cipher
for Virtex-E and Virtex-II devices have then been
described. Our study illustrates that the choice of an
algorithm is strongly related to the target technology.
For instance, a 8 Gb/s encryption rate requires
devices ranging from a XC2V1000 (multiplication
with subsequent modulo correction) to a XC2V4000
(carry-save adder based operator).
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Table 7: Results of some other researchers.

Reference Technology Thigl;g/lsl]pm: Frﬁ\(}[}l;;l]cy

Mosanya et al. [13], Beuchat [1] | XCV1000-4 0.1 13.2
Beuchat et al. [2] XCV1000-4 4.3 66.7
Leong et al. [9] XCV300-4 0.5 125.0
Haenni [6] Itanium 0.55 733.0
G4 0.47 450.0

Hémélsinen et al. [7] XCV1000E-6 6.78 105.9

| Fastest circuit of this paper | XC2V1000-6 | 8.5 133.3
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