
HAL Id: hal-00016672
https://hal.science/hal-00016672

Preprint submitted on 10 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deductive Object Programming
Francois Colonna

To cite this version:

Francois Colonna. Deductive Object Programming. 2006. �hal-00016672�

https://hal.science/hal-00016672
https://hal.archives-ouvertes.fr

cc
sd

-0
00

16
67

2,
 v

er
si

on
 1

 -
 1

0
Ja

n
20

06

Deductive Object Programming
trying to make object-oriented programming less complex

François Colonna
Laboratoire de Chimie Théorique

Université Paris 6
email:colonna@lct.jussieu.fr

home page:http://galileo.lct.jussieu.fr
this document url:

http://galileo.lct.jussieu.fr/˜frames/ARTICLES/DOP/Provider.tex

January 10, 2006

Preamble

This document is a working document, it may never be published in a scientific
journal. It is aimed at starting a discussion on the interest of the kind of
programming method explained below.

Any comments or corrections are welcomed can be written in color in this
document and sent back to me.

Abstract

We propose some slight additions to O-O languages to implement the
necessary features for using Deductive Object Programming (DOP). This
way of programming based upon the manipulation of the Production Tree
of the Objects of Interest, result in making Persistent these Objects and
in sensibly lowering the code complexity.

1 Motivation

It is a real frustration, when writing some code, not to be able to use the values
of a functionality of an object by simply referencing it. If you do so, you will
obtain an error as soon as you will use the functionality of a just created object.

In this paper we show that, in fact, this can be achieved quite easily. The
only information necessary to obtain values as soon as an object is referenced,
is its production tree. Having remarked that any object has necessarily been
produced by a tree (see below, paragraph 2), the trick is therefore to make this
tree accessible to the programmer .

On the other hand, in the usual way of programming, the produced-by re-
lation is never made explicit but hidden in calls to object creation methods,

1

scattered in the code and difficult to follow. It is therefore a common experi-
ence, when trying to modify somebody else code, to be stuck during hours or
days at the same point because we have no clear idea of what we have to do
before being able to use a given object . We shall show that, by making explicit
the produced-by relation between objects, one can avoid to get trapped in this
kind of problem : any reference to an object can be removed or added to a class
without any further remodeling of the code.

We shall show how deductive programming is implied by this way of man-
aging objects which may become persistent (see [Wik]) and can easily be dis-
tributed.

We shall give as an example how we have implemented this programming
mechanism in Eiffel shall conclude by the proposition to add some new features
to the language to hide the management tools inside the compiler and make the
new mechanism transparent to the programmer.

2 The Production Tree

2.1 definition

By production tree we mean the tree resulting from the relation produced-by
between two objects. Contrarily to the client-of relation, the graph generated
by the produced-by relation cannot have cycles, otherwise an object could never
be produced

This tree defines in a unique way any ground-state (see paragraph 2.3.3) of
a given object.

As the edges of the tree are totally defined by the code, the only degrees of
freedom left to define an object state are the values of the leaves (the parame-
tersvalues). The production tree and a set of coherent parameters are nothing
else than the persistence closure of the object, this point will be developed below
(see paragraph 3). It is therefore sufficient to know the production tree of an
object and to give its calculation conditions (parameters) to define an object
state before any calculation has been done.

Once this simple proposition has been stated, there is no difficulty to make
it effective, that is :

1. To make possible the automatic production of any object in any state.

2. To define a key from the production tree to access to the corresponding ob-
ject state (stored in a data-base, for example) before any calculation has been
done. This possibility allows to reuse the object values not only its function-
nalities , thus extending the capabilities of programming with objects.

3. To make unimportant (but easily providable) which path the author has
decided to follow to build some target object t from pre-existing objects a,
b, ..., x, making the code modification by an alien programmer easier.

2

2.2 new kinds of attributes

In the whole paper we shall speak of attribute to designate the couple (memory-
function, memory-attribute).

Let an attribute be a memory-function returning some value of type A
stored at an attribute memory address, we can write :

feature {ANY}

an_attribute : A is

do

Result := an_attribute_memory

end -- an_attribute

feature {NONE}

an_attribute_memory : A

The couple (an attribute, an attribute memory) represents what we
shall abusively call the attribute an attribute of type A.

Classical OO design concentrates (see OOSC2 [Mey97]) not on what at-
tributes a class has but on what methods a class can offer to manipulate them.
Of course we agree with this view, nevertheless it leads to hide the important
question how can I build an instance of this class to use its methods? .

As the attributes are supposed not to appear in the interface, their role as
a builder or as an internal sub-state provider is never mentionned. Focusing an
method for reusability purpose is fine, but methods do not determine the
state of an object, while attributes do. And, using an object in a given
state is what a programmer is at first concerned with, then he is concerned with
applying methods on it.

We do not violate the OO principle to hide attributes. Looking at the
example upper you can see that only an attribute memory-function will
appear in the interface and not an attribute memory which is hidden, as it
should be.

We will now define two kind of attributes : internal attributes and builder
attributes or external attributes .

2.2.1 internal attribute

An internal attribute is an attribute calculable from the values of other at-
tributes of the same object. For example, the perimeter of a TRIANGLE
(see Annexe B in paragraph 8.2) is calculable if we know the positions of the 3
vertices.

2.2.2 builder attribute or external attribute

An external or builder attribute is an attribute calculated outside the current
object. For example, the 3 vertices of a TRIANGLE, (see paragraph 8.2).

3

These attributes are a source of complexity as they usually need a lot of
information to be built. Our programming mechanism consists in providing
these builder attributes in the correct state (attribute of the attribute) with the
only knowledge of the name of the attribute and the name of the state we want
it to be in. For example, in a TRIANGLE we can directly ask for the vertices
the state “position”, using this syntax:

needs (vertices(‘‘position’’))

vector_1 := vertices.item (1).position

Which ensures that after the call to the procedure needs , the code can use
the value of the position of a vertex as shown. The vector 1 variable will be
assigned to the correct value.

2.2.3 parameter attribute : calculation conditions

We call parameter a kind of builder attribute not built in the production tree,
it has to be provided by the User of the code (i.e. read from the input). A
parameter is a leaf of the production tree. Any builder attribute of basic type
(BOOLEAN, INTEGER, REAL, STRING) is necessarily a parameter : it can-
not be built.

We call calculation conditions the whole set of parameters for a given pro-
duction tree. They define the persistence closure (see [Mey97] page) of the
production tree and determine completely all the states of any object inside the
tree. They are pure basic types or collections of basic types.

In the case of a TRIANGLE the parameters are the coordinates of the 3
vertices, i.e. 9 real numbers in a 3-dimensional space.

2.3 Object state, sub-state and ground-state

2.3.1 object state

We say that an object is in a sub-state s if the exported attribute s has been
computed.

2.3.2 object sub-state

We shall consider two types of sub-states corresponding to the two types of at-
tributes already mentioned in paragraph 2.2, the internals and the externals(or
builder sub-states).

The State of an object is characterized by the list of its sub-states.
The production-tree handles only builder sub-state.

2.3.3 object gound-state

We shall say that an object is its ground-state if it has all its builders built.
If an object is in its ground-state any of its internals state can be built.

4

2.3.4 well-built object

We propose to say that an object is well built if all its internals sub-states need
the same builders . In other words, all internal trees share the same leaves : the
builders .

For example, a TRIANGLE with 3 vertices as the only builder is well built.
If a builder color is added it is not, as a color is not needed to build the perimeter
for instance.

2.4 cyclic connections

If an object is produced by a tree, its relations with other objects form a graph
which can even be cyclic. We show here, that this case can also be managed.
Consider the following example :

Object a has an attribute b in a of type B
Object b has an attribute a in b of type A
If - in the code - object a is created first, then object b is a builder of A ,

because it is referenced in A but not created in A.
Therefore, a is created, then b is created, a in b is computed, then b in a.
If the situation is the opposite you will have the inverse order of computa-

tions.
So, cyclic connections can also be handled, with the production tree mecha-

nism.

2.5 The solution we propose : The Object Manager

How to implement this mechanism in an Object-Oriented language ? The so-
lution that we have implemented consists in associating an Object Manager to
each object of interest (see paragraph 3).

2.5.1 the Object Manager specifications

An Object Manager is an object, biunivocally associated to a “real” object, and
able to answer the programmer’s request provide me with this object in this
sub-state.

In some sense it is more than an object and less than an “agent”. An Object
Manager obey to the following requirements : when asked for providing an
external object object an object in state s it

I. tries to retrieve object an object in state s from a data-base

1. if an object in state s is stored returns an object

2. if an object in state s is not stored

i. creates the instance an object

ii. launches the memory-function of an object corresponding to the
attribute s.

5

iii. stores an object in state s in data-base.

II. returns an object in state s

2.5.2 How the Object Manager is used now ?

We give below an example in Eiffel of the part of class TRIANGLE using the
Object Manager triangle om for a TRIANGLE (line 1 of code below) :

1: triangle_om : TRIANGLE_MANAGER

2: vertices_memory : ARRAY[POINT]

3: vertices (sub-state : STRING) : ARRAY[POINT] is

4: do

6: if vertices_memory = Void then

7: vertices_from_key (sub-state)

8: end

9: Result := vertices_memory

10: ensure

11: Result = vertices_memory

12: end -- vertices

13: vertices_from_key (sub-state : STRING) is

14: local

15: vertices_om : ARRAY_POINT_MANAGER

16: do

17: vertices_om := triangle_om.child_om_extract (‘‘vertices:ARRAY[POINT]’’)

18: vertices_memory := vertices_om.provided (sub-state)

19: ensure

vertices_memory_is_built: vertices_memory /= Void

20: end -- vertices_from_key

21: centroid : POINT

22: do

23: if centroid_memory = Void then

24: centroid_memory_build

25: end

26: Result := centroid_memory

27: ensure

28: Result = centroid_memory

29: end -- centroid

6

30: centroid_memory : POINT

31: centroid_build is

32: local

33: vertices_local : like ARRAY[POINT]

34: do

35: vertices_local := vertices (‘‘position’’)

36: create centroid_memory.make

37: centroid := (vertices.item (1) + vertices.item (2) + vertices.item (3))/3

38: ensure

39: centroid_is_built: centroid /= Void

40: end -- centroid_build

We show upper how the centroid attributes uses the vertices attributes
as if it were already calculated. The procedure centroid build (line 31) refers
to vertices in sub-state “position”. This assignment (line 35) launches the
execution of the memory-function vertices (line 3). The first time the code
is executed, vertices memory is Void, the procedure vertices from key is
therefore called (line 7 and 13). It asks the Current’s Object Manager (line
17) triangle om to extract from itself the Object Manager of its son class AR-
RAY[POINT] (line 15). This Object Manager vertices om provides vertices memory
in the correct sub-state (line18), i.e. provides of the vertices positions.

2.6 Proposed Extensions to the Eiffel language

Most of the code in paragraph 8.1 upper can become transparent to the pro-
grammer if taken into account by the compiler. For this, four new keywords
have to be added to the Eiffel language. Two new requirements and two new
declaration keywords.

2.6.1 the needs requirement

To be provided with a needed builder attribute in a given sub-state:
needs (object 1 (sub-state) ,..., object n (sub-state)
To be provided with a needed internal attribute:
needs (object 1, ..., object n)

2.6.2 the uses requirement

defines the list of building procedure depending on the context
uses (context 1 : object 1 build, ..., context n : object n build)
We propose 3 kinds of contexts : build, read and set as shown in table 1

7

context procedure suffix
build a build
read a read
set a set

Table 1: 3 kinds of contexts, and the procedure suffixes associated

2.6.3 the internal keyword

The syntax looks like :
attribute : SOME-TYPE internal (building-procedure)
To the type SOME-TYPE the keyword internal is added and the name of

the building-procedure is given between parenthesis.

2.6.4 the builder keyword

The syntax looks like :
attribute : SOME-TYPE builder (sub-state-name)
To the type SOME-TYPE the keyword builder is added and the name of

the sub-state to be provided is given between parenthesis.

2.6.5 How the Object Manager could be implemented ?

3 Persistent Objects : a new object sub-category

Because the ground-state (paragraph 2.3.3) of an object is equivalent to its
persistence closure (see [Mey97], page 252) and because we have a mechanism
allowing to define the state of an object before it is created it easy to
make it persistent and consequently to check if it has not been stored somewhere
(a data-base) in that state.

This is of course not as easy with usual programmation not making the
production tree explicit. Most of the time, if the object has been computed
during a previous task, you have no mean to know it and the object has to be
recomputed.

Using the Object Manager mechanism, it is possible to build a key to char-
acterize uniquely any ground-state of an object of interest and to store them
in a data-base, we call persistent objects the objects managed in this way.
Sub-keys can also be defined to handle sub-sates.

Here, the builder (not creation) procedures are closed : no further infor-
mation is needed to invoke them (this information is already known by the
production tree).

In Chapter 8 of his book OOSC2 [Mey97] at the top of page 236, Bertrand
Meyer says (although in an other context) :

8

... what you need is, rather than a creation instruction, an as-
signment operation that attaches a reference to an already existing
object.

It is exactly what Persistent Objects are aimed to : create an object in one
of its possible states as soon as it is assigned. While what Eiffel propose is to
create an object in an empty state or in a unique built state, not made clearly
explicit, defined by its creation routine and its class invariant, this is not enough.

4 What is lacking in the Class Interface

An object Class is designed to provide a set of functionnalities to manipulate
their instances : the interface.

Looking at this interface, the question what can I do with it? can be an-
swered, and how to reuse a piece of code already written by somebody else.

However, before using a functionality of a class you have to create an in-
stance, and to create it in such a state as to be sure that this func-
tionality will be usable (will have values solving your problem not default
values). That is precisely the information lacking in the class interface : how
to reach the state in which you wish to use one instance, not bothering with all
information necessary to reach it? .

It is most of the time a complex task to build an instance needed in order to
use it. Why ? Because in usual OO programming the object builder procedures
are opened that is to say when you invoke them, you need to feed them from
outside with some necessary information in an argument list, they do not provide
a closed object state.

In Eiffel you write

create this_attribute.make (some parameters)

and not

create this_attribute.make (‘‘some_state’’)

For example, if you are writing a new class (for example, TRIANGLE PYRAMID
of paragraph 5.3.1) needing an attribute base of type TRIANGLE to use its
surface, what you need is not only to know that surface is of type REAL and
requires that the sides (of type ARRAY[SEGMENT]) should be defined.
What you need is a mechanism replacing the require statement on the neces-
sary existence of the sides by the effective provision of the surface ofbase,
i.e. a REAL number which represents its computation, whenever you make
a reference to it and whatever the method to built it could be.

By looking at the class interface of TRIANGLE (see Annexe 8.1 - the class
of a triangle - you have no access to this essential information, but you nee it,
here is one of the reason why codes are still complex, even if written according
to the best O-O style. Because authors are not forced to make explicit the route
they have decided to follow, leading from one object to its son in the production
tree

9

4.0.6 Notes

If you code surface build (s1, s2, s3: SEGMENT) you suppose that s1, s2, s3
are already calculated, outside surface build which is not.

If you code

surface_build is

needs (s1, s2, s3)

do

end -- surface_build

you tell the code : if s1, s2, s3 are not yet calculated, calculate them.
The calculation of s1, s2, s3 is done inside surface build

5 Deductive Object Programming

It was a way of procedural programming which used to be popular in the sev-
enties (see references [FM78],[Les78]). It is a top-bottom approach :

Start from the final result you want to reach.
Write the procedure to built it. Then write the procedure building the

immediate needed objects.
Iterate until the data.
This way of programming has been re-actualized for Object Oriented Pro-

gramming as follows:

5.1 definition

• start from the final result (the Target of the Task, an Object in some state
: the centroid of a TRIANGLE)

• design objects immediately needed to build this Target (the sons of its
production tree) as function-attributes (lines 2 and 3 of paragraph 2.5.2)

• in the building procedure of the Target, write a reference reference to the
son-objects this make them available in the desired state. (lines 35 of
paragraph 2.5.2)

• iterate over the objects needed and the objects needed by the objects
needed until parameters (not buildable but readable objects) are reached,
read them.

In other word, instead of building an intermediate object needed to reach
your goal, write your code as if these needed objects were already built,
and defer their building or retrieving from a storage to a specific object, here
the Object Manager .

10

Programming with Persistent Objects or Deductive Object Programming are
a same thing : the programmer never cares of providing values to a function-
attribute-persistent-object, he declares it as a builder function-attribute and
uses it.

It must be remarked that the sequence of calls to the building routines are
included in each other

a build calls b build which calls c build ... until the leaves
In the usual (bottom-up) way of programming one starts building what is

needed first (the data-leaves) then climbs up the tree, the sequence of calls in
not inclusive :

build the leaves when done build x, ... when done build c when done build
b when done build a

and the programmer has to known the whole tree.

5.2 connection with the Production Tree

The connection between DOP and the Production Tree is clear : both needs to
make explicit the sons of the relation built-by for any class to be programmed.
The whole Production Tree will be built automatically from this basic informa-
tion.

As we have already mentioned upper, the production tree is the main infor-
mation necessary to let the compiler be able to produce an object in a given sub-
state by simple reference (point two of deductive programming pre-requisite).

5.3 improvement of code Quality

5.3.1 lower complexity

The complexity is lowered because the only information a programmer has to
known to program a new class is the interface of the son-classes. There is no need
for him to know the whole production tree as it is implicit in usual programming.

The complexity is also lowered because the state of the objects are now made
explicit and one can access to the values of any object without taking care the
complex way to get them.

For example, suppose we want to program a class TRIANGULAR PYRAMID
to use the surface of its triangular base, we shall write :

class TRIANGULAR_PYRAMID

apex : POINT builder (‘‘position’’)

base : TRIANGLE builder (‘‘surface’’)

base_surface : REAL is

needs base(‘‘surface’’)

do

11

Result := base.surface

ensure

Result = base.surface

end -- base_surface

This is sufficient to obtain the surface of attribute base computed according
to the context of the Current object TRIANGULAR PYRAMID. No other
knowledge is necessary.

The compiler will be able to tell the programmer that the three vertices coor-
dinates of this particular base-triangle have to be provided as data of the Task,
as well as the apex coordinates, to defined completely the new class instances.

The procedures triangle from key and apex from key (similar the that
of line 13 of paragraph 2.5.2 are taken into account by the compiler.

5.3.2 objects reusability

Persistent Objects have the property of object reusability i.e. : as objects the
code of their Class is reusable, as persistent objects their values are reusable.

5.3.3 more evolutionary capabilities

Persistent objects are more independent than usual objects.
If you need to modify a piece of code, that is to say, take out some attribute

and put it elsewhere, the code will re-adapt automatically, because the produc-
tion tree is not hard coded as in an usual program but dynamically built by
the compiler from the father-son couples.

This property is important for the maintainability of always growing systems
as those used in scientific simulations.

5.3.4 better class design

A good design implies a few builders and that the internal attributes all share
the same calculation conditions . That is to say all internal trees share the same
leaves. If it is possible to cluster the leaves, because some internal attributes use
only a sub-set of the leaves, it can be a sign of a bad design. The class has to
be splitted in one or several heirs, each of them being well-built (see paragraph
2.3.4.

5.4 distribution of the building of Objects Persistent

To manage the distribution of objects building first of all one needs to set up
their production tree. This can be a huge task to be done with a usual code.

Using DOP, it is easy to distribute the building of the nodes of the produc-
tion tree on some defined processors of a cluster or the nodes of a grid : this
new functionality can be implemented in the Object Manager .

12

5.5 extending the Concept of a Calculation

Instead of computing values we can use the same mechanism to compute what-
ever property of an object. For example we can compute the cpu time, the
memory, the disk space to be used, the choice of a given processor or grid node.

The management of the production tree at compilation time, allows any kind
of work flow simulation on the code.

5.6 iterative processes

Iterative processes (optimization, Monte Carlo simulation, molecular dynamics)
are very common in scientific calculations.

An iterative process is a process which computes iteratively the same Target
object and modifies at each iterations the calculations conditions of this Target .

As the DOP mechanism aims at computing an object in a well defined state,
modifying the calculation conditions will modify de facto all the objects whose
state is no more consistent with the new calculations conditions. And only these
objects will be recalculated automatically.

We may point out that using DOP allows a code to optimize any object
attribute against any parameters of the code (this facility is extensively used in
the QMCMOL code [QMC]).

These processes needs to use :
a boolean function like is not ready instead of the condition attribute = Void

(see lines 6 and 23 of paragraph 2.5.2. This function is true whenever some node
of the production tree of attribute has been modified.

an iteration counter

6 Conclusion

We have shown that combining deductive programming with making explicit
the production tree of the objects of interest (persistent objects) increases the
re-usability and lowers the complexity of codes.

By adding a few functionnalities to any OO language may totally hide the
agent-like mechanism necessary to manage the persistent objects in a today
language like Eiffel. Doing this, the compiler can take an active part in the
automatic building of any persistent object in any of its states. This helps con-
siderably the possibility to modify somebody else’s code in full security without
any deep knowledge of the code and allows a simulation of the calculation flow.

Moreover, the objects managed in this way are persistent by construction
and can also have their calculation distributed.

Anyway, this programmation improvement is not yet sufficient to write codes
fully understandable by an alien programmer expert of the domain, which is the
ultimate goal of programmation. A mechanism to make the author’s intentions
immediately understandable, is still lacking.

13

7 Acknowledgements

We are grateful to Nicole Levy, Parinaz Davari and Francisca Losavio (PRISM,
Versailles) for their contributions and to Dominique Colnet and Frederic Merizen
(Loria, Nancy) for their decisive help in the SmartEiffel implementation. We
thank Gilles Blain and Zahia Guessoum (Lip6, Paris) for reading the manuscript.

8 Annexes

Comparison between the usual and new implementation of class TRIANGLE,
what has changed.

8.1 A : an usual implementation of class TRIANGLE

Below, we give an example of what the interface of class TRIANGLE like now
:

class TRIANGLE

feature {ANY}

sides : ARRAY[SEGMENT]

require

vertices_are_defined: vertices /= Void

ensure

sides_are_defined: Result /= Void

end -- sides

centroid : POINT

require

vertices_are_defined: vertices /= Void

ensure

centroid_is_built: Result /= Void

end -- centroid

perimeter : REAL

require

sides_are_defined: sides /= Void

ensure

perimeter_is_built: Result > 0.0

end -- perimeter

surface : REAL

require

sides_are_defined: sides /= Void

ensure

14

surface_is_built: Result > 0.0

end -- surface

vertices : ARRAY[POINT]

make (points : ARRAY[POINT])

require

points_defined: points /= Void

ensure

vertices = points

end -- make

invariant

vertices_are_built: vertices /= Void

end -- class TRIANGLE

As far as the objects produced by the class (surface, perimeter, sides,
centroid) things are pretty fine and their relations are clearly described by the
assertions:

to compute the surface you need the sides and the perimeter, to define
the sides you need the vertices, to obtain the perimeter you need the sides.

So, supposing you obtain the vertices, you have no difficulty to understand
how to compute any other property of a TRIANGLE, just by looking at the
interface.

The problem starts with the vertices, where do they come from ? Knowing
that they are an array of POINT, which has to be provided not Void, does not
help to answer the question how to obtain the vertices ? .

The new implementation below show the answer: the vertices are a builder ,
the Calculation Manager will take care of providing them in the sub-state “po-
sition” i.e. with their positions valued as needed for the current calculation.

This TRIANGLE case may seem trivial, when the same mechanism is applied
to the calculation of a density matrix from a precise kind of wave-function in
quantum physics, the programming effort stays as low as it is here, which is less
trivial to do with usual programming.

8.2 B : a new implementation of class TRIANGLE

Below, we give an example of what the interface of class TRIANGLE could
look like using the Eiffel extensions :

class TRIANGLE

feature {ANY}

15

sides : ARRAY[SEGMENT] internal (sides_build)

needs

vertices ("position")

ensure

sides_are_built: Result /= Void

end -- sides

centroid : POINT internal (centroid_build)

needs

vertices ("position")

ensure

centroid_is_built: Result /= Void

end -- centroid

perimeter : REAL internal (perimeter_build)

needs

sides

ensure

perimeter_is_built: Result > 0.0

end -- permeter

surface : REAL internal (surface_build)

needs

perimeter,

sides

ensure

surface_is_built: Result > 0.0

end -- surface

vertices : ARRAY[POINT] builder (‘‘position’’)

ensure

vertices_are_defined: Result /= Void

end -- vertices

invariant:

Current /= Void

end -- class TRIANGLE

• internal keyword means that the attribute is internally built by the pro-
cedure in parenthesis.

• builder keyword means the that the attribute has to be externally built in
the sub-state where the attribute position of each POINT is defined.

16

We want to emphasize on the fact that the sub-state “position” of class
POINT, is also apparent in this interface of TRIANGLE. Which tells the pro-
grammer in which sub-state a POINT will be used in a TRIANGLE. Now,
some context appears in the interface.

8.3 C : the external tree of a TRIANGLE

17

x y z

vertex 1

x y z

vertex 2

x y z

vertex 3

triangle

8.4 C : the internal trees of a TRIANGLE

8.4.1 C-a : the internal tree of surface

vertex 1 vertex 2

sides 1

vertex 2 vertex 3

sides 2

vertex 3 vertex 1

sides 3

surface

triangle

8.4.2 C-b : the internal tree of centroid

vertex 1 vertex 2 vertex 3

centroid

triangle

18

References

[FM78] J.P. Finance and J.F. Mari. Méthode de programmation déductive et
structures de données. Technical Report 78-E-042 CRIN - 139, CRIN,
1978.

[Les78] P. Lescanne. Sémantique d’un langage adapté à la construction
déductive des programmes. Technical Report 78-R-0152 CRIN - 139,
CRIN, 1978.

[Mey97] B. Meyer. Object Oriented Software Construction. Prentice Hall, 1997.

[QMC] QMCMOL. http://galileo.lct.jussieu.fr/˜qmcmol/mediawiki/index.php/main page.

[Wik] WikiPedia. http://en.wikipedia.org/wiki/persistence.

19

Contents

1 Motivation 1

2 The Production Tree 2
2.1 definition . 2
2.2 new kinds of attributes . 3

2.2.1 internal attribute . 3
2.2.2 builder attribute or external attribute 3
2.2.3 parameter attribute : calculation conditions 4

2.3 Object state, sub-state and ground-state 4
2.3.1 object state . 4
2.3.2 object sub-state . 4
2.3.3 object gound-state . 4
2.3.4 well-built object . 5

2.4 cyclic connections . 5
2.5 The solution we propose : The Object Manager 5

2.5.1 the Object Manager specifications 5
2.5.2 How the Object Manager is used now ? 6

2.6 Proposed Extensions to the Eiffel language 7
2.6.1 the needs requirement . 7
2.6.2 the uses requirement . 7
2.6.3 the internal keyword . 8
2.6.4 the builder keyword . 8
2.6.5 How the Object Manager could be implemented ? 8

3 Persistent Objects : a new object sub-category 8

4 What is lacking in the Class Interface 9
4.0.6 Notes . 10

5 Deductive Object Programming 10
5.1 definition . 10
5.2 connection with the Production Tree 11
5.3 improvement of code Quality . 11

5.3.1 lower complexity . 11
5.3.2 objects reusability . 12
5.3.3 more evolutionary capabilities 12
5.3.4 better class design . 12

5.4 distribution of the building of Objects Persistent 12
5.5 extending the Concept of a Calculation 13
5.6 iterative processes . 13

6 Conclusion 13

7 Acknowledgements 14

20

8 Annexes 14
8.1 A : an usual implementation of class TRIANGLE 14
8.2 B : a new implementation of class TRIANGLE 15
8.3 C : the external tree of a TRIANGLE 17
8.4 C : the internal trees of a TRIANGLE 18

8.4.1 C-a : the internal tree of surface 18
8.4.2 C-b : the internal tree of centroid 18

21

