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Abstract— In this paper, a programmable analog retina is
presented and compared with state of the art MPU for embedded
imaging applications. The comparison is based on the energy
requirement to implement the same image processing task.
Results showed that analog processing requires lower power
consumption than digital processing. In addition, the execution
time is shorter since the size of the retina is reasonably large.

I. I NTRODUCTION

Smart sensors, vision chips [3]–[6] have potential to take
an increasing part in navigation or surveillance systems: toys
or industrial robots, car driving assistance. . . For this class
of applications, one has to provide vision systems which
feature high processing capabilities, low cost, compactness
and reduced power consumption. In a previous paper [10] we
introduced the architecture of the X-Cell, a universal analog
computation cell. Compared to its digital counterpart, lower
power consomption and reduced silicium area are expected.
Such statement has to be proven with fairly quantitative study.
Consequently, we propose a comparison between a vector of
X-Cell dedicated to image processing called PARIS and a
similar digital architecture comprising SIMD units: PowerPC
G4 Altivec. This comparison is performed using a well-
known algorithm, representative of image processing task:
edge detector. We present a detailed implementation on both
architectures and focus on the hot spots for an optimized
implementation. Two benchmarks are provided, the first one
is about the execution time only to estimated the efficiency
of general purpose processor as a challenger to dedicated
architectures, the second deals with the most embedded con-
straining criterion: power consumption.

II. PARIS ARCHITECTURE

In most vision chips, photodetectors form an array.
With our programmable approach, photodetectors are as-

sociated to memory elements, them also organized in ar-
ray. These arrays are bordered on one of their side by a
column of analog/digital processors (see Fig. 1). Operations
are performed sequentially on columns while snapshot mode
image acquisition is concurrently achieved. A decoder selects
then the column reached by processors. Furthermore, each
processor access to a set of rows by the way of a mux (MUX3).
Finally, fully random addressing can be convenient for reading
and writing images.

D Q

D Q

D Q

D Q

Y-D
EC

O
D

ER

X-DECODER

MUX3 A/D-PROC I/OARAMSENSORS

Fig. 1. Array and decoder architecture.

A. Architecture of rows

Each row of the retina is organized around two mixed
analog-digital buses used to connect various functional units
(see Figure 2). The functional units that can compose the row
of a vision chip are: the rows of photosensors, the row of
analog memory map, the set of analog registers, the Analog
Processing Unit (X-Cell), the Boolean Processing Unit and
few special registers. These last are notably required for I/O
and global operators. In each processor, linear processings
are handle by the Analog Processing Unit. Boolean units
associated to the condition register allows to achieve different
operations according to locally stored values. Binary data
stemming from a comparator are combined by the Boolean
Processing Unit and can be written in a condition register.
Mixed registers will then be modified wherever this condition
is true. Such architecture paves the way to numerous linear,
isotropic or not algorithms [8].
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Fig. 2. Architecture of rows



B. Generic functional units
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Fig. 3. Generic Functional Unit

Derived from [10], each functional unit is organized around
one OTA, a set of capacitors associated to switches and of
two buses: a global one, and a local one (see Figure 3). The
global bus, which is dedicated to inputs/outputs, is namedV -
BUS. It is intended to distribute a value represented by a
voltage, therefore allowing to realize non-destructive copies.
The voltage is forced by the output of one OTA or by the
output of a digital cell. A voltage mode operating drastically
reduce its sensitivity to parasitic capacitors. The localQ-
BUS, is intended to realize charge transfers and balancing.
The charge transfer is used to perform accumulations while
division is based on charge balancing. The voltage of the
Q − BUS is set toVREF by the output of one OTA thanks
to a feedback loop. So, its parasitic capacitor keeps its charge
and thus has little impact during the transfer of charges [10].

C. Operating with switched capacitors

All the functional units are based on switched capacitors
structures. Four different operations are used. They are illus-
trated by an example on the scheme given figure 4. At the
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Fig. 4. Operation of the switched capacitors

instant all the switches close, the charge of all the capacitors
are modified:

1) The capacitorC0, is shorten, thus reset.
2) The capacitorsC1 and C2 are also emptied of their

charges,Q1 andQ2, which flow by way of theQ-BUS
to capactorsC3 and C4. It is a cumulative transfer of
charges.

3) The total chargeQ1+Q2+Q3+Q4 divides up between
two parallel capacitors,C3 andC4, in proportion to their
respective capacitance. It achieves charge balancing.

4) The resulting voltage on capacitorsC3 andC4 is copied
onto capacitorsC5 and C6 by way of theV -BUS. It
performs a copy in voltage mode. The configuration of
switches allows to do or not a change of sign by reversal
of the target capacitor during the copy.

D. Analog processing unit

The analog processor is constituted by a set of capaci-
tors associated to switches allowing various configurations.
It includes a setT of processing capacitors associated to
registers-capacitors (cf. Fig. 5). To improve accuracy, each
capacitor is an instance of a unitary capacitorCu. Let define
theweightof a setS of capacitors, the dimensionless quantity:
1

Cu
×

∑
i∈S Ci, whereCi is the capacitance of theith capacitor

of S. Typicaly, four capacitors of weights 1, 1, 2 and 4
compose the T set, allowing 3-bit processing.

More general operation of the analog processor,
multiplication-accumulation can be decomposed into three
steps: Load, Distribute, Accumulate. For each of these 3
steps, a set of the implied capacitor (respectivelyL,B,A) is
considered.
• During the first step (Load), the setL ⊂ T (of weight l)

is charged by a positive or negative voltage-copied. The
input voltageVin is copied (positively or negatively) in a
subsetL ⊂ T of capacitors (of weightl). After loading,
the chargeQL, stored in setL, is QL = ±l× Vin×Cu.

• During the second step (Balancing), the chargeQL is
distributed on the setB ⊃ L (of weight b), so that each
capacitor belonging toB has a voltageVB = 1

b × ±l ×
Vin.

• Finally, the last step (Accumulation) consists in adding
charges stored in a set of capacitorsA ⊂ B, of weight
a, on a register-capacitorCR of capacitanceCu. So:
VCR

(t + 1) = VCR
(t)± a×l

b × Vin.
a) : Hence, the realized operation is a fractional mul-

tiplication/accumulation (FMAC) with a coefficientab × l.
Obviously, if B = L, step 2 can be omitted and the realized
operation is a integer multiplication/accumulation (IMAC)
with a coefficienta. As a consequence, the MAC instruction
duration is 2 (IMAC) or 3 cycles (FMAC). Table I describes a
subset of the X-Cell instructions.MR represents any mixt
register and BR the boolean register. LC stands forLocal
Condition.

Instruction Description Cyc.
IMAC MR,Vin ± a MR←MR± a× Vin 2

FMAC MR,Vin ± al/b MR←MR± a×l
b
× Vin 3

ASTR MR,Vout Vout←MR 1
CLR MR MR← 0 1
CMP MR Vout← (MR > 0) 1
WHERE LC ← BR 1
WHERN LC ← notBR 1
ENDWH LC ← TRUE 1

<OP> MR BR← BR op MR 1
BSTR MR MR← BR 1

TABLE I

X-CELL INSTRUCTION SUBSET
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Fig. 5. Boolean and Analog Unit.

III. PHYSICAL IMPLEMENTATION

Two retinas prototypes were designed. Although the first,
PARIS I, is based on a slightly different structure from the
universal structure described here, its functioning is somewhat
identical. It consists in a16×16 pixel array - each including a
photosensors and 3 analog memory elements - associated to a
minimal analog processor including only four capacitors: three
for processing and one for register [8]. Its main characteristics
are presented in the table II.

Parameter PARIS I PARIS II
Resolution 16× 16 256× 256
Processor 16 256
Pixel Size 50× 50µm2 25× 25µm2

Max Frequency 10MHz 40MHz
Power cons. 30mW 800mW

MixtRegisters 2 3
Resolution 7-bits 10-bits
Processing
Capacitors 2 4
Boolean

Processor No Yes
I/O 1 analog 1 analog

and 8 digital
Reduction No 1 global-OR
Operator and 1 Mean Op

TABLE II

PARIS I AND PARIS II PARAMETERS

This circuit has been successfully tested and operates prop-
erly [13]. It is currently being evaluated for applications in
mobile robotics.The second circuit,PARIS II, was designed
according to the principle described in this paper. It brings
improvements with regard toPARIS I, notably on readout
circuits of analog memory and photosensors [12]. Its main
characteristics are presented in the table II.

IV. DERICHE BENCHMARK

In order to estimate the performance of the X-Cell architec-
ture, we have decided to compare it to another SIMD vector
architecture and to implement a de facto image processing

algorithm like edge detection. The closest ”software” archi-
tecture are the General Purpose Processor with multimedia
SIMD extension (also called SWAR for SIMD Within A
Register). The most embedded GPP are the PowerPC Altivec
and Intel Centrino. PowerPC has a more extensive SIMD ISA
for image processing (crossbar capabilities, reductions and 8-
bit multiplier) Centrino implements SSE2 but with only 16
multipliers, Pentium4 Prescott extends SSE2 instructions with
reduction capabilities with SSE3, but can not be considered
as an ”embedded” processor. Note that an SoC version of
the PowerPC G4 has been released by Motorola/Freescale
Other embedded processors might be chosen for their SIMD
architecture: the ARM11 (SIMD in 32-bit registers: four 8-bit
computations in parallel) or the latest Intel Xcale/PCA which
includes a multimedia extension called Wireless MMX (64-bit
registers for 8/16/32-bit integer and 32-bit FP).

Classical edges detector operators implemented in artificial
retinas FIR filters like Sobel, Prewitt or Roberts filters. Canny-
Deriche filters have assert themselves for their robustness.
These filters can be expressed as a non recursive filter like
Canny’s filter or a recursive filter like Deriche’s one. Each have
drawback and advantage : Deriche have a fixed complexity
that does no depend on the smoother coefficient, but requires
large memory to hold a complete image, Canny is more
adapted to ”data-flow” because the image must not be store in
memory, only the current row, but the filter size depends on
the smoother coefficient.

X-Cell is well-adapted to Deriche filter: it has three memory
plans to store 3 images, and the performances of the processor
vector array are not limited by Deriche’s filter structure, if the
vector displacement is orthogonal to the filter. The Deriche’s
filter complexity has been reduced by a factor two by Garcia
Lorca [16]. That is this filter that will be implemented.

The second order filter is:
y(n) = b0x(n) + a1y(n− 1) + a2y(n− 2)
with:
γ = e−α b0 = (1− γ)2 a1 = 2γ a2 = −γ2

A. 2D filter implementation

The Q8 fixed-radix code Deriche H & V smoothers are:

for(i=0; i<n; i++)
for(j=0; j<n; j++)

x0 = X[i][j]
y1 = Y[i][j-1]
y2 = Y[i][j-2]
y0 = (b0.x0+a1.y1+a2.y2) >> 8
Y[i][j] = y0

Deriche H

for(j=0; j<n; j++)
for(i=0; i<n; i++)

x0 = X[i][j]
y1 = Y[i-1][j]
y2 = Y[i-2][j]
y0 = (b0.x0+a1.y1+a2.y2) >> 8
Y[i][j] = y0

Deriche V

b0=256× b0 a1= 256× a1 a2= 256× a2



B. PowerPC Altivec implementation

The three main problems to address for SIMD implemen-
tation are:
• cache impact
• recursive filter structure
• underflow
The horizontal filter does not generate cache miss whereas

the vertical filter does. The solution is to permute the internal
loop with the external loop of the filter to obtain an horizontal-
like scan with a vertical filter. Such a permutation correspond
to a cache blocking optimization [15].

for(i=0; i<n; i++)
for(j=0; j<n; j++)

x0 = X[i][j]
y1 = Y[i-1][j]
y2 = Y[i-2][j]
y0 = (b0.x0+a1.y1+a2.y2) >> 8
Y[i][j] = y0

Deriche VH

Between two iterations of the filter there is a loop-carried
dependency. The solution proposed (figure 6) is to perform a
block-transposition of pixel into a band, to process the band
and then to perform a second block-transposition into the
source image.
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Fig. 6. Deriche Band transposition

The last problem is about underflow: since the coefa2 is
negative, for a long set of zero input values, one can have
x0 = 0, y1 = 0 but y2 6= 0, so an underflow can happen.

C. X-Cell implementation

The following pseudo-code sources describe the primitives
used for edge detection. The program iterates on all this
routines for each column.

CLR MR0
FMAC MR0, I1(i, 0) 0.375
FMAC MR0, I2(i-1, 0) 0.875
FMAC MR0, I2(i-2, 0) 0.25
ASTR MR0, I2(i, 0)

PARIS horizontal FGL smoother

CLR MR0
IMAC MR0, I2(i, 0) -1
IMAC MR0, I2(i, 1) -1
IMAC MR0, I2(i+1, 0) 1
IMAC MR0, I2(i+1, 1) 1
CMP MR0

PARIS horizontal gradient

CLR MR1
IMACC MR1, MR0 -1
WHRN
ASTR MR1,MR0
ENDWH

Horizontal absolute value

MACC AR1 , AR0 1
ASTR AR1, I2(i, 0)
Addition of the two previous results

Applying the four FGL filters (forward/backward, horizon-
taly/verticaly) requires4×11 = 44 cycle/column. In addition,
2 × 10 = 20 cycles/col and2 × 6 = 12 cycle/col are
required respectively to compute the gradient and absolute
value, horizontaly and verticaly. Finaly, 3 cycles/ col perfom
the addition of horizontal and vertical gradient. All things
considered, the execution time of this algorihm is 79 cycles /
col i.e. 0.51 ms with a256× 256 array running at 40 MHz.

V. RESULTS & ANALYSIS

To observe the impact of cache behavior we use thecpp
(Cycle Per Pixel):

cpp =
t× F

n2

n 128 256 512 1024
cpp Deriche H 2.95 2.85 3.31 3.87

cpp Deriche VH 4.86 4.88 5.24 6.19
cpp gradient 2.69 2.88 3.17 3.65

cpp total 10.5 10.61 11.72 13.71

TABLE III

cpp FOR 128, 256, 512AND 1024 IMAGE SIZE FORPOWERPC

n 128 256 512 1024
t(ms) Deriche H 0.048 0.187 0.868 4.058

t(ms) Deriche VH 0.080 0.320 1.374 6.491
t(ms) gradient 0.044 0.189 0.831 3.827

t(ms) total 0.172 0.696 3.073 14.376

TABLE IV

EXECUTION TIME (MS) FOR 128, 256, 512AND 1024 IMAGE SIZE FOR

POWERPC

The execution time on the Xcell does not suffer from cache
misses:cpp is still constant: 11 cycles per Deriche filter, for a
total of 44 for the four filters and 39 cycles for the gradient.

If we only compare the execution time, PowerPC and Xcell
run at same speed (the G4 is even faster), for small images
(128 and 256), when they fit the cache. Such a comparison is
biased since it does not take into account the required energy
for these architectures.



n 128 256 512 1024
time(ms) total 0.253 0.506 1.011 2.022

TABLE V

EXECUTION TIME (MS) FOR 128, 256, 512AND 1024 IMAGE SIZE FOR

XCELL

The classical metric used to compare embedded processor
is Mips/Watt. We do no believe that Mips or Mops is still
an up-to-date metric since the latency of instructions may
vary a lot, and so, counting the number of instructions could
lead to erronous conclusion except if you want your system
to run the Dhrystone benchmark. Not very useful indeed.
We prefer thet × Watt (in Joule) which is the amount of
energy required to apply an algorithm on an image. The idea
is that if a processor is by far real-time for an application,
it’s SoC version will use adownclockedversion of the classic
processor version, the energy remains constant but the power
is smaller. For256 × 256 images the classic G4 is 78 times
faster that the realtime constraint (40 ms). Dividing its clock
frequency by 10 will also reduce its power consumption by
approximately 10, for a still realtime 5.1 ms execution.

E = t×Watt

The technology used for the current XCell processor is a
0.60µm CMOS. Switching from 0.60 to 0.25µm will decrease
the capacitor surface, that is the leaking capacitor, the required
curent and finally the consumption. A scale factor can be
applied to estimate not a faster XCell butsmallerXCell. The
factor is(0.60/0.25)1.5. The exponent is 1.5 and not 2 since it
appears in the Literature that such a switch provides a factor
that is smaller than the gain in surface, and closer to 1.5 than
2. For XCell we estimated the consumption of the micro-
controler to 200 mW and 800mW for a 256 XCell vector.
With such an assumption, the result for the new criterion is:

n 128 256 512 1024
PowerPC (mJ) 1.72 6.96 30.73 143.76

XCell (mJ) 0.15 0.51 1.82 6.88
scaled XCell (mJ) 0.07 0.23 0.81 3.06

gain 11.3 13.8 16.9 20.7
scaled gain 25.5 30.9 37.9 46.9

TABLE VI

COMPARISON OF REQUIRED ENERGY FORPOWERPC AND XCELL

With such a criterion, the difference of performances for
extremeembedded applications is more realistic from our point
of view.

VI. CONCLUSION

A programmable analog retina has been presented and
compared with state of the art MPU for embedded imaging

applications. The comparison is based on the energy require-
ment to implement the same image processing task. Each
version has been independently optimized to fit the consid-
ered architecture. To complete the performance evaluation, an
evaluation of 1GHz DSP C64x is planned. Right now, the
valididty of such a analog design has been demonstrated. Even
when obsolete process are used for the retina, results showed
that analog processing requires lower power consumption than
digital processing. In addition, the execution time is shorter
since the size of the retina is reasonably large.
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