
HAL Id: hal-00014494
https://hal.science/hal-00014494

Submitted on 25 Nov 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The transition to turbulence of the torsionnal Couette
flow

Anne Cros, Patrice Le Gal

To cite this version:
Anne Cros, Patrice Le Gal. The transition to turbulence of the torsionnal Couette flow. Rama
Govindarajan. Laminar-Turbulent transition, Springer, pp.311-316, 2006, Fluid mechanics and its
application. �hal-00014494�

https://hal.science/hal-00014494
https://hal.archives-ouvertes.fr


THE TRANSITION TO TURBULENCE
OF THE TORSIONAL COUETTE FLOW

Anne Cros and Patrice Le Gal
Institut de Recherche sur les Phénom„enes Hors Equilibre,
49, rue F. Joliot-Curie, 13384, Marseille, cédex 13, France

legal@irphe.univ-mrs.fr

Abstract This work is devoted to the experimental study of the transition to turbulence
of a flow confined in a narrow gap between a rotating and a stationary disk.
When the fluid layer thickness is of the same order of magnitude as the boundary
layer depth, the azimuthal velocity axial gradient is nearly constant and this
rotating disk flow is a torsional Couette flow. As in the plane Couette flow or
the cylindrical Couette flow, transition to turbulence occurs via the appearance
of turbulent domains inside a laminar background. Nevertheless, we show that
in the rotating disk case, the nucleation of turbulent spirals is connected to the
birth of structural defects in a periodic underlying spiral roll pattern.
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Introduction

Transition to turbulence in extended systems can be induced by the erratic
nucleation of defects in periodical patterns. This is the case in Rayleigh-Bénard
convection [1] or in Taylor-Dean system [2] for instance. Topological defects
in wave patterns have also been identified in numerical solutions of coupled
Landau-Newell type equations [3] or of the complex Ginzburg-Landau equa-
tion (CGLE) [4, 5] and the mechanism for transition from phase to defect chaos
has been identified by Coullet et al. [6]. In our work, a primary instability cre-
ates a periodic laminar spiral wave pattern in the torsional Couette flow con-
fined between a rotating and a stationary disk [7, 8]. As the rotation rate of
the disk is increased, some defects appear through the local disappearance of
a spiral (a dislocation), or through the connection of two systems of spirals
with different orientations (a grain boundary). Then as the control parameter
is further increased, the number of these defects increases, and spatially local-
ized chaotic regions develop under the form of turbulent spirals (TS). In this
paper, we first describe the appearance of the disorder (Defect Turbulence) in
the periodic pattern until the first TS waves appear. Then, the lifetime of these



turbulent structures grows and they form permanent turbulent spirals arranged
nearly periodically all around the disks. We will thus describe in the second
part of this article this transitional process in the framework of spatiotempo-
ral intermittency (STI). This mechanism involves a mixed state of turbulent
patches and laminar domains, which coexist for the same values of the con-
trol parameter. This kind of scenario has been observed in different systems
[9–11]. Several experiments have also described this mechanism of transition
to turbulence. In particular, it was studied in Rayleigh-Bénard convection in
annular and rectangular geometries [12, 13] and in the Taylor-Dean [14] or the
Taylor-Couette systems [15]. In all these experiments, the transition to tur-
bulence via STI was described within the framework of critical phenomena.
Pomeau [16] proposed in 1986 that the spatiotemporal intermittency scenario
could be similar to a percolation process, where the disordered state would
propagate into the laminar one via a contamination mechanism. In this case,
the turbulent state would be the "active", or "contaminant" phase, while the
laminar state would be the "absorbing", or the "passive" state. Although the
critical exponents found in experiments take various values and do not corre-
spond to those of percolation, we will keep this terminology to describe the
first steps of the invasion process of the turbulence in our own system. In par-
ticular we will define a "percolation threshold" as the limit value of the control
parameter for which the turbulent structures possess an infinite lifetime.

1. The rotating disk device
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Figure 1. Rotating disk device.



The experimental device, presented in Figure 1, consists of a water-filled
cylindrical casing in which the rotating disk is immersed. The top lid of the
container plays the role of the stationary disk. The radius of the stainless steel
disk is 140 mm and its thickness is 13 mm. It is painted in black to enhance
visualizations which are realized with kalliroscope flakes. The drive shaft goes
through the bottom of the tank and is connected to a d.c. electric motor whose
rotating velocity can be varied fromΩ = 0 to 200 rpm with an accuracy better
than0.2%. The stationary disk is a 20 mm thick plexiglass plate, so that the
flow can be observed through it. The distance between the rotating disk and the
fixed one is set to 2 mm. A CCD video camera is placed on the rotation axis and
can rotate if necessary with a velocity which can be adjusted in order to observe
the waves in their rotating frame. This video camera is finally connected to a
computer, and images can be captured in real time.

2. Transition to Defect Turbulence
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Figure 2. a) Defect in the spiral roll pattern. b) Space-time diagram along a radius

Figure 2-a) shows a typical defect of the laminar spiral pattern. We will
describe the flow by the use of spatio-temporal diagrams which are realized
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Figure 3. Total number of defects versus Reynolds number with a fit as proposed in [17]



along the radial direction. Figure 2-b) presents such a diagram where Defect
Turbulence [6] can be observed. A statistical study of these defects shows that
their occurrence obeys a Poisson law near their threshold. We observe also in
Figure 3 that their number increases similarly to what is proposed by theoreti-
cal studies [17]. Our results are also in agreement with the interpretation that
these defects are homoclinic orbits of a dynamical system nearby a saddle-node
critical point [18]. As the rotation rate is further increased, the time duration
separating two consecutive defects decreases dramatically and the defects are
associated to strong amplitude modulations. A similarity with the “MAWs”
of Brusch et al. [4] is striking. In fact, these modulations act as seeds for the
turbulent spirals visualized in Figure 4-a).

3. Spatio-temporal Intermittency
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Figure 4. a) Visualization of the turbulent spirals. b) Space-time diagram (along a circle)
showing the turbulent spirals (in black) inside the laminar flow (in white)

Very near their observation threshold, these turbulent structures that are the
equivalents of the turbulent spirals of the cylindrical Couette flow (note that
in spite of their traditional appellation, they are not spirals in this case but
rather helices!) have a very short life time. As the rotation rate is further
increased, this lifetime increases until a threshold is reached (the percolation
threshold) where they finally form permanent turbulent spirals arranged nearly
periodically all around a circumference. However, since the number of these
turbulent spirals decreases with the rotational frequency, the transition to a
fully turbulent regime is never achieved. Thus the turbulent fraction of the
pattern saturates to a value close to 0.5. Figure 5 presents the evolution of
this turbulent fraction with the Reynolds number. However, as it can be seen,
this turbulent fraction presents a power law critical behavior with an exponent
β = 0.3 near its threshold.

Another exponent of the transition can also be measured. As presented in
Figure 6-a), the statistics of the length of the laminar domain follows an ex-
ponential law with a well defined characteristic length. The evolution of these
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Figure 5. a) Evolution of the turbulent fraction versus Reynolds number. b) At threshold, an
exponentβ = 0.3 ± 0.01 can be determined.

laminar domains lengths versus the Reynolds number presents a divergence
with a power law with an exponentα = −

1

2
(see Figure 6-b). Thus, although

the transition to turbulence is not completed, it appears that it really shares
some features with Space-Time Intermittency [19]. Therefore, although a uni-
versal scenario is still lacking for this type of transition to turbulence, we note
that values of bothα andβ agree with the measures of Daviaud et al. [12]
in their convection experiments. Note also that the saturation of the turbulent
fraction near0.5 is reminiscent of the amazing periodization of turbulence in
bands as discovered by Prigent et al. [20] in the plane and in the cylindrical
Couette flow and reproduced numerically by Barkley and Tuckerman [21].
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Figure 6. a) Exponential behavior of the histogram of the laminar lengths. b) Measure of the
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of the critical behavior of the laminar length.
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