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Abstrat

Due to the tehnologial importane behind the possibility to disover novel lasses of
hard materials an enormous researh e�ort has been direted during the last deades to-
wards the synthesis and haraterisation of promising arbon-based ompounds suh as
arbon nitrides and boron arbon nitrides. However, despite many attempts of synthesis
and the indisputable progresses made in the �eld, amorphous samples with unlear rys-
tallographi data have been often obtained in many researh laboratories. In partiular,
several problems arise from the fat that most of the samples are of polymorphi nature,
thus leading to a diÆult and unertain spetrosopi haraterisation.

A general understanding of the relations between omposition and the eletroni
struture properties has therefore been provided theoretially in this Thesis to get further
insight into the harateristis of pure rystalline forms. As one might expet this work
has suddenly been turned out into a ompliate and hallenging task beause of the lak
of reliable experimental rystal strutures to be used as referenes for the omputational
inputs. Therefore it beame essential to propose hypothetial bi- and three-dimensional
model phases to obtain trends on the relative stability, eletroni and mehanial prop-
erties of arbon- and boron arbon-nitrides. So far as that is onerned, a systemati
study of pure rystalline CNx (where x=0.36 and 1.33) and BC2N systems has been
proposed as an important omplement to the experimental knowledge. Thanks to the
progress in modern omputer tehnology it has also been possible to ompute suh an
investigation via ab-initio (�rst-priniples) methods by testing and probing di�erent solid
state alulational approahes. In fat, one of the �rst objetives of this projet has been
the searh of a valid omputational density-funtional-based sheme able to reprodue
and/or predit the hardness and stability of a wide variety of ultra-hard materials.

Calulations of the ohesive properties and standard enthalpies of formation have
been arried out to address the thermodynami stability of di�erent isoeletroni ompo-
sitions, namely C3N4, C11N4 and BC2N. The hardness has also been studied by means of
the analysis of the alulated elasti and bulk moduli. The investigation of the eletroni
properties has been ahieved with the alulation of the density of states, band struture,
eletron density maps and rystal orbital overlap population analysis. For some of the
studied moleular lusters, the 13C NMR shifts have been evaluated to provide a spetro-
sopi disrimination between systems with very similar strutural harateristis. This
is the ase of the hexagonal and orthorhombi models of the graphiti-like C3N4 form.
Finally, the determination of the eletron-energy loss near edge strutures of C, B and
N K ionisation edges has been omputed in order to provide referene spetra of pure
rystalline materials, likely to allow a disrimination of polymorphi samples.

Results are presented to demonstrate that arbon nitrides are ultra-hard systems
with outstanding mehanial properties. In partiular, the arbon rih omposition,
C11N4, has shown larger ohesive energies and it is generally sti�er than the eletroni
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analogue C3N4. However, the possibility to deposit single phase samples should be highly
hampered in both stoihiometries by their large positive enthalpies of formation.

The introdution of boron atoms (boron arbon nitrides) has displayed a slight de-
reasing in the magnitudes of the elasti and bulk moduli, though the alulated values
are still higher than that of ubi boron nitride (i.e. the seond hardest known material).
Nevertheless, three-dimensional BC2N phases have also shown exothermi enthalpies of
formation whih point to an easier deposition of the \BCN" materials with respet to
arbon nitrides. Therefore, by onsidering the whole set of the investigated model phases,
sp3-bonded boron arbon nitrides result as the best andidates for novel ultra-hard ma-
terials whih ould, in priniple, be synthesised with the atual tehniques. Very reent
experimental results seem to support this general tendeny.



R�esum�e

Compte tenu des enjeux tehnologiques qui sous-tendent la d�eouverte de nouvelles lasses

de mat�eriaux ultra-durs, des e�orts de reherhe onsid�erables ont �et�e destin�es durant les

deux derni�eres d�eades �a la synth�ese et �a la arat�erisation de ompos�es l�egers prometteurs

tels que les nitrures et boronitrures de arbone.

Cependant, malgr�e de nombreuses tentatives de synth�ese et les progr�es indisutables

r�ealis�es dans e domaine, seuls des �ehantillons amorphes (mal arat�eris�es du point de la

ristallographie) ont pu être obtenus dans di��erents laboratoires de reherhe. En partiulier,

plusieurs probl�emes sont soulev�es de par la nature polymorphe des �ehantillons produits,

onduisant de e fait �a une arat�erisation spetrosopique peu pr�eise.

Par ons�equent l'�etablissement de relations entre omposition et propri�et�es de struture

�eletronique est fourni sur une base th�eorique dans ette Th�ese a�n d'approfondir les a-

rat�eristiques des formes ristallines des mat�eriaux. Comme on pouvait s'y attendre ette

tâhe omplexe est vite devenue un d�e� ompte tenu du manque de donn�ees exp�erimentales

pour les strutures ristallines suseptibles de servir de point de d�epart aux aluls.

Il devint alors essentiel de proposer des phases mod�eles (hypoth�etiques) aux �ehelles bi-

et tri-dimensionnelles pour �etablir des tendanes omparatives sur les stabilit�es, propri�et�es

�eletroniques et m�eaniques des nitrures et boronitrures de arbone. En partiulier, les �etudes

syst�ematiques des syst�emes ristallins binaires CNx (o�u x=0,36 et 1,33) d'une part et ternaires

BC2N d'autre part ont �et�e men�ees et pr�esent�ees omme une fore de proposition vis �a vis des

exp�erimentateurs.

Grâe aux �enormes progr�es de la tehnologie moderne des ordinateurs, il a �et�e possible

de mener es �etudes au moyen de m�ethodes ab initio (d�es le d�epart) en testant et sondant

di��erentes approhes de l'�etude du solide. En fait, l'un des premiers objetifs de mon travail de

Th�ese a �et�e de valider le meilleur sh�ema alulationnel au sein de la th�eorie de la fontionnelle

densit�e, DFT, suseptible de reproduire et/ou de pr�edire la duret�e et la stabilit�e d'une grande

vari�et�e de mat�eriaux ultra-durs.

Les aluls des propri�et�es de oh�esion et les enthalpies standard de formation ont �et�e

entreprises a�n d'expliquer la stabilit�e thermodynamique des di��erentes ompositions iso-

�eletroniques, nomm�ement C3N4, C11N4 et BC2N. La duret�e a �et�e �egalement �etudi�ee au

moyen de l'analyse des modules d'�elastiit�e et de ompressibilit�e. L'examen des propri�et�es

de struture �eletronique a �et�e r�ealis�e par le alul des densit�es d'�etats, de la struture de

bandes d'�energie, des artes de densit�e �eletronique et des populations de reouvrement.

L'�etude des d�eplaements himiques par RMN du 13C de lusters mol�eulaires a permis de

fournir un moyen de disrimination entre syst�emes ayant des arat�eristiques struturales

tr�es voisines. C'est notamment le as des strutures hexagonale et orthorhombique de C3N4

graphitique. En�n, les seuils d'ionisation K de C, B et N ont �et�e alul�es (spetrosopie

�eletronique par perte d'�energie \EELS") pour les di��erentes strutures ristallines a�n de

fournir des spetres de r�ef�erene suseptibles d'aider �a la d�etermination des ompositions des
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�ehantillons polymorphes.

Les r�esultats d�emontrent que les nitrures de arbone �etudi�es sont des mat�eriaux ultra-durs

ayant des propri�et�es m�eaniques exeptionnelles. En partiulier, les phases de la omposition

rihe en arbone, C11N4, montrent des �energies de oh�esion sup�erieures et se pr�esentent

omme plus dures que l'analogue iso-�eletronique C3N4. N�eanmoins la possibilit�e de d�eposer

des stoehiom�etries monophasiques serait p�enalis�ee pour les deux ompositions ompte tenu

de leurs �energies de formation fortement positives.

L'introdution d'atomes de bore (boronitrues de arbone) onduit �a une l�eg�ere diminution

des amplitudes des modules d'�elastiit�e et de ompressibilit�e. Mais les valeurs alul�ees restent

sup�erieures �a elles de BN ubique, le seond meilleur mat�eriau ultra-dur onnu apr�es le

diamant. N�eanmoins les phases tri-dimensionnelles BC2N analys�ees pr�esentent des enthalpies

de formation nettement exothermiques, e qui est en faveur d'une pr�eparation (par d�epôt de

ouhes mines par exemple) plus ais�ee de phases \BCN" par rapport aux nitrures binaires

CNx pour lesquels�H0
f > 0. Par ons�equent en onsid�erant l'ensemble des syst�emes mod�eles,

les phases \BCN" �a liaisons hybrid�ees essentiellement sp3 (tri-dimensionnelles) se pr�esentent

omme les meilleurs andidats pour de nouveaux mat�eriaux ultra-durs �a base d'�el�ements

l�egers suseptibles d'être synth�etis�es par les moyens atuels. Ces observations sont appuy�ees

par des r�esultats exp�erimentaux r�eemment obtenus.



Prefae

This Thesis illustrates the work that I arried out between 1998 and 2001 at the In-
stitut de Chimie de la Mati�ere Condens�ee de Bordeaux (ICMCB-CNRS), University of
Bordeaux I. The purpose of my researh within the European Training and Mobility of
Researhers (TMR) Network1 has been the haraterisation of the properties of di�er-
ent arbon- and boron arbon-nitride ompounds by attested, highly aurate eletroni
struture alulations. In partiular, the modelling of novel potential hard materials like
binary CNx and ternary BxCyNz have been addressed.

When I started my work in November 1998 there were already several published
sienti� papers (both theoretial and experimental) dealing with the distint features of
novel ompounds, quite often alled super- or ultra-hard materials, that ould in priniple
ompete with the hardness of the onventional diamond. However, one of the greatest
attrations of this subjet that has always appeared important to me is the lose link
existing between hardness and phase stability on the one hand and the bonding and
struture of the material on the other. The onnetion between these two aspets has
been to some degree proved in this Thesis to be one of the essential priniples on whih
the development of the next generation's hard materials should be based.

Although most of the investigations were performed at the solid state level, the study
of some moleular lusters has also been suessfully integrated for the evaluation of the
13CNMR hemial shifts. The largest part of the alulations have been ahieved by using
the omputational failities of the intensive entre of alulation \pôle Mod�elisation Mi-

rosopique et M�esosopique en Physique, dans l'Environnement et en Chimie" (M3PEC)
of the University of Bordeaux I. The results obtained have been well reeived in an ex-
hange of information with the other partners of the European ommission.

The present manusript shows an introdutory part intended to explain some spei�
onepts about hard materials and to over the basi ideas behind the employed theoret-
ial methods. The seond part is spei�ally dediated to the thorough desription of the
results obtained during the study of arbon nitride and boron arbon nitride systems.

Bordeaux, September 2001

Maurizio Mattesini

1Synthesis, Struture and Properties of New Carbon-Based Hard Materials, FMRX-CT97-0103.
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Nomenlature

Frequently used abbreviations:

APW Augmented plane wave
ASA Atomi sphere approximation
ASW Augmented spherial wave
b Body entered ubi
COOP Crystal orbital overlap population
CVD Chemial vapor deposition
DFT Di�erent density funtional theory
DOS Density of states
EELS Eletron energy loss spetrosopy
EF Fermi energy
Eg Band gap
ELNES Energy loss near edge struture
f Fae entered ubi
FFT Fast fouries transforms
FP-LAPW Full-potential linearized augmented plane wave
GGA Generalized gradient approximation
hp Hexagonal lose paked
ICOOP Integrated rystal orbital overlap population
KS orbitals Kohn-sham orbitals
LAPW Linearized augmented plane wave
LDA Loal density approximation
LMTO Linear muÆn tin orbital
NMR Nulear magneti resonane
PP Pseudo-potential
PVD Physial vapor deposition
Rmt MuÆn-tin radius
sp2, sp3 Eletron orbital hybridization
US-PP Ultra-soft pseudo-potential
�, � Bonding types
x Exhange-orrelation funtional
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Chapter 1

Introdution

1.1 The interest in novel ultra-hard materials

The possibility to synthesise new materials with hardness1 similar or even larger than
diamond has beome of fundamental and tehnologial interest for hemists, physiists
and in partiular for the whole materials sientists ommunity. It was in the middle
of the last entury when most of the known ultra-hard materials (i.e. diamond and
ubi boron nitride) were synthesised and manufatured with high pressure and high
temperature proesses [1, 2, 3℄. The ontinue researh on the �eld has reently permitted
to synthesise or redisover superhard ompounds suh as SiO2-stishovite [4℄, ubi-Si3N4

[5℄ and ubi-BC2N [6℄. The onstant growing interest in this domain is also due to the
development (1980's) of new vapor deposition tehniques (CVD, PVD and laser ablation),
whih allow the deposition of hard materials �lms at low temperature and pressures on
di�erent substrates [7, 8, 9, 10, 11℄.

Diamond exhibits exellent mehanial, hemial and physial properties and nowa-
days remains the hardest known material. However, it is well known that it annot be
used in utting tools for steel owing to a ertain instability at high temperatures. As
a matter of fat, its stability drastially dereases in the presene of oxygen at even
moderate temperature (� 873 K). It is also not a very suitable abrasive for utting and
polishing ferrous alloys sine it tends to reat and form iron arbides. Furthermore, its
super abrasive performane is somehow limited. For these reasons and beause of the
need to substitute expensive diamond in many other appliations, new hard materials are
required. It is mostly the strong industrial demands of wear resistant oatings for utting
and forming tools whih has driven the searh of novel hard materials. Common hard

1
hard�ness (h�ard0n�is), n. [AS. heardness.℄ 1. The quality or state of being hard, literally or �gura-

tively. Soure: The Amerian Heritage Ditionary of the English Language, Fourth Edition Copyright

 2000 by Houghton Mi�in Company (http://www.ditionary.om/). All rights reserved.

1



2 Chapter 1: Introdution

solids are usually lassi�ed into ompounds with metalli (TiN or WC), ioni (Al2O3)
or ovalent bonding (diamond, Si3N4 et..). Transition metal nitrides and arbides (TiN
and TiC) have been largely used as oatings for wear protetive appliations in the last
deades. However, arbon based materials suh as arti�ially grown diamond and hy-
drogenated arbon ompounds have beome a valid alternative. These materials possess
good protetive properties and low frition oeÆient, thus open the possibility to use
the oatings as solid lubri�ants. Another important lass of materials is represented
by arbon nitrides ompounds with general formula CNx. The growing researh inter-
est arose from the theoretial work of A. Y. Liu and M. L. Cohen [12℄ whih predited
for �-C3N4 a hardness omparable to that of diamond. Despite the synthesis of pure
rystalline and stoihiometri C3N4 has been found extremely diÆult, some non stoi-
hiometri arbon nitrides have evidened interesting properties suh as high hardness
and elastiity, and low frition. These ompounds are thus promising andidates for the
next generation's wear protetive oating. However, the fundamental problem with suh
materials remains the extreme diÆulty found in growing pure rystalline nitrogen-rih
samples. Espeially with thin �lm tehnology various deposition tehniques and growth
onditions have been tested without great suess: non-rystalline and nitrogen-de�ient
�lms are always obtained.

The introdution of boron atoms into arbon nitrides leads to the possibility to obtain
new hard materials with general formula BxCyNz. With suh a boron-based ompound
the low oxidation resistane of diamond might be improved thus removing the problem of
using hard materials at high temperatures in air. The reent interest in boron arbon ni-
trides has been mostly foussed on the BC2N stoihiometry, whih is a phase isoeletroni
with the well known C3N4. The �rst evidene of the graphiti BC2N dates bak to the
synthesis of Kouvetakis et al. [13, 14℄, where hemial vapor deposition method was used
with BCl3 and CH3CN as starting materials. Several e�orts have been made in order to
modify these graphiti BC2N systems into highly dense three-dimensional phases but un-
fortunately, despite the use of high-pressure and high-temperature methods, no ommon
results were found in the last deade. Some researhers found problems with a ertain
limited solubility [15, 16℄, while others laimed a segregation in a mixture of diamond
and ubi boron nitride (-BN) [17, 18, 19℄. Nevertheless, early theoretial alulations
[20, 21, 22℄ have suggested that these ompounds should possess an intermediate hardness
between diamond and -BN .

1.2 Aims of the Thesis

It is ertain that despite the initial sienti� enthusiasm, the synthesis of arbon ni-
trides and boron arbon nitrides has suddenly turned out in a very diÆult task. Many
synthesis routes were tested and important human e�orts are being made in order to
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haraterise polymorphi samples. The searh of a pure rystalline material and its
subsequent spetrosopi haraterisation remains nowadays the main topi for all the
researhers working on CNx and BxCyNz ompounds.

Given the ost and the omplexity of the synthesis/haraterisation proedure, om-
puter modelling investigation has here been used to disover new possible rystalline
models and to predit their material properties in a faster and heaper way. The om-
putational methods have already been applied to diamond and ubi boron nitride (i.e.
the hardest known solids) with great suess, provoking a onsiderable interest in in-
vestigating other hypothetial materials. The �rst goal of my researh has been the
determination of an eÆient omputational approah for simulating the relative stabil-
ity and the hardness of some potential phases that have reently been proposed for the
C3N4 stoihiometry. In partiular, several Density Funtional Theory (DFT) methods
have been tested, among the various simulation shemes available in our laboratory, in
order to inspet their peuliar reliability and usefulness. Subsequently, the most promis-
ing �rst-priniples methods have been employed in the rest of the Thesis to alulate the
ohesive properties, bulk and elasti moduli of di�erent kinds of arbon nitride and boron
arbon nitride model strutures. Eletroni properties have also been studied by means of
density of states and band struture analysis. In addition, the inuene of hybridisation
on the hemial bonding and stability has been disussed in terms of the site projeted
densities of states as well as the rystal orbital overlap population. Finally, sine the
haraterisation of arbon nitrides and boron arbon nitrides is mostly restrited by the
problem of obtaining pure rystalline samples, the alulation of the theoretial energy
loss near edge struture has been shown in order to provide referene spetra.

A large part of this work has also been oriented to the theoretial proposition and
haraterisation of novel model systems isoeletroni with diamond and ubi boron
nitride. I have in my researh foused most of the attention on the rystal engineering

of the C-B-N networks by proposing various binary (C11N4) and ternary (BC2N) model
ompounds. Their eletroni, mehanial and spetrosopi haraterisation given in this
Thesis should provide a preious tool for the interpretation of the experimental results.

1.3 Outline of the Thesis

The �rst Chapters are mostly onerning a general introdution to the domain of ultra-
hard materials (Chapters 2 and 3) and to the employed omputational methods. In
partiular, Chapter 4 resumes the basi ideas behind the DFT, while Chapters 5, 6 and 7
ontain a brief desription of the various method of alulations. In Chapter 8 a detailed
investigation of the CNx systems is presented by paying most of the attention to the
di�erenes between the C3N4 and C11N4 stoihiometries. The study of boron arbon
nitrides is given in Chapter 9. The attention is here foused on the BC2N phases and
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in their mehanial and eletroni properties. The onlusions are drawn in Chapter 10
where a general disussion is presented for eah of the investigated lass of ompounds.



Chapter 2

The Hardness and Covaleny

2.1 First theoretial proposition of Carbon Nitrides as novel

hard materials

It was in 1985 that M. L. Cohen [23℄ proposed an empirial relation between the bulk
modulus, B (volumetri ompressibility or bulk modulus), and the rystalline solids of
elements of the III, IV and V olumn of the periodi table. In the free-eletron gas model,
the ase of metals, the expression of the B modulus (GPa) sales as the Fermi energy,
EF , and the eletron onentration, n,

B =
2

3
nEF : (2.1)

Starting from the model of Phillips-VanVehten [24℄ it is possible to extend the expression
of B to semiondutors. The bond geometry of ovalent bonds is roughly represented
with a ylindrial shape with volumes � � (2aB)

2
d, where aB is the Bohr radius and d

(�A) the length of the ylinder. Using this approximation we obtain,

B = 45:6Ehd
�1 (2.2)

where Eh (eV) represents the homopolar ontribution of the opti gap, Eg (E2
g = E2

h +
E2
ioni). Using the saling of Phillips (Eh / d�2:5) for the dependene of Eh on d for

tetrahedral ompounds sharing eight valene eletrons per atom pair, we obtain

B = 1761d�3:5; (2.3)

where the nearest-neighbor d is again in �A and B in GPa. The introdution of the ioniity
parameter, �, permits to onsider the ioni harater of the bonding:

B = (1971 � 220�) d�3:5: (2.4)

5
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This empirial relation results appropriate for the group-IV (� = 0), III-V (� = 1) and II-
VI (� = 2) semiondutors. Furthermore, in order to aount for a di�erent oordination
number (di�erent from 4 of the tetrahedral site), M. L. Cohen introdued the variables
N, whih represents the mean oordination number. The �nal version of the equation
takes the following form:

B =
N

4
(1971 � 220�) d�3:5: (2.5)

The above equation gives an aurate B value for diamond and for semiondutors with a
zin-blende struture. The volumetri ompressibility B inreases with the lowering of d
and �. The hardest materials are thus those that show lower ioniity and stronger bonds.
Diamond responds to these harateristis; indeed it shows N=4, �=0 and d=1.54 �A.
The bulk modulus alulated for diamond with the Eq. 2.5 is 435 GPa, whih is very
lose to the experimental one of 443 GPa. In the ase of arbon nitrides with formula
C3N4 the mean oordination number (N) is

24
7

1 whih is lower than that of diamond, 4.
Taking into aount the small eletronegativity di�erene between arbon and nitrogen,
we assume the C-N bond to be slightly ioni with �=1

2
. From the values of the ovalent

radius (rC=0.77 �A and rN=0.75 �A) we de�ne a C-N bond length of 1.52 �A. The insertion
of these parameters in Eq. 2.5 provides a B value of 430 GPa. Therefore, arbon nitrides
with formula C3N4 should exhibit a bulk modulus omparable to that of diamond.

This was the �rst theoretial indiation of the possibility to �nd new promising lasses
of arbon based hard materials. In partiular, the large bulk modulus alulated from the
simple empirial relation of M. L. Cohen was suÆient enough to provoke in the middle
of the 1980's an outstanding sienti� enthusiasm whih is, nowadays, still not vanished.

2.2 Eletron ount onsiderations

The de�nition of "ultra-hard" materials is usually employed to desribe all the ompounds
that have shown hardness values omparable to that of diamond. Generally speaking,
these materials are solids with an hardness in between 8-10 Mohs sale (Tab. 2.2). Sine
diamond, ubi boron nitride (-BN) and boron arbides (B13C2-B12C3) are the hardest
materials known, it an reasonably be expeted that novel ultra-hard solids will be found
in the same B-C-N ternary omposition diagram (see Fig. 2.1). However, as one might
antiipate many ombination of C, B and N atoms are, in priniple, possible and an
huge amount of di�erent stoihiometries and strutures an rapidly be imagined for both
binary and ternary ompounds. Therefore, the proposition of novel hard phases has

1Carbon has four valene eletrons ([He℄ 2s2 2p2) and an form one ovalent bond with four nitrogen

atoms, whereas nitrogen possesses �ve valene eletrons ([He℄ 2s2 2p3) and an only have one ovalent

bond with three atoms of arbon. For this reason N=
(3�4)+(3�4)

7
in the C3N4 stoihiometry.
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Minerals or Formula Mohs Knoop 100
Syntheti Materials (GPa)

Talum Mg3 [(OH)2 =Si4O10℄ 1
Hexagonal Boron Nitridey h�BN 0.15-0.30
Gypsum CaSO4 � 2H2O 2
Calite CaCO3 3
Fluorite CaF2 4
Apatite Ca5 [(F;OH) = (PO4)℄ 5
Feldspar K [AlSi3O8℄ 6
Quartz SiO2 7
Topaz Al2 [F2=SiO4℄ 8
�-Silion Nitridey �-Si3N4 17
Corundumx-Titanium Nitridey Al2O3 � T iN 9 21
Silion Carbidey SiC 26
�-Silion Nitridey �-Si3N4 26-35
Titanium Crabidey T iC 28
Boron Carbidey-Titanium Diboridey B4C � T iB2 30
Boron suboxides BnO 30-59
Stishovitey SiO2 33
Cubi Boron Nitridey �BN 45
Diamondx C 10 75-100

[y℄ Syntheti material. [x℄ Syntheti material or natural mineral.

Table 2.1: Hardness of minerals and some syntheti eramis aording to F. Mohs. For
syntheti materials miro-hardness values are given in units of Knoop sale. Values are
shown as ompiled by R. Riedel in Ref. [25℄.

generally been restrited in this Thesis by the adoption of the so-alled eletron ounting

rule. A systemati investigation of the various stoihiometries beomes thus possible
thanks to the limited number of allowed atomi ombinations.

If we look, for example, at the building up of the two-dimensional arbon nitride
ompounds, one ould �rstly envisage a random replaement of C by N within the layers
of graphite. However, this results in an unstable eletroni struture on�guration. This
is due to the additional eletrons of the nitrogen atoms whih have to be aommodated
in energetially unfavourable eletroni bands. But if ompounds are designed to be
isoeletroni to diamond and graphite the stability and the eletroni strutures are
hanged. For instane graphiti C3N4 has 32 valene eletrons per formula unit when the
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Figure 2.1: Shemati ternary omposition diagram indiating di�erent "hard" stoi-
hiometries.

2s states are inluded. Distributing the eletrons on eight sites gives four eletrons on
eah site whih is isoeletroni with diamond and graphite. The eighth site is a vaany
(C321N4) and the lone pairs of three of the nitrogen atoms are pointing toward this hole.
From this, graphiti C3N4 should have a similar band struture at the Fermi level as
graphite, and C3N4 with a three-dimensional network is also expeted to have a band
gap similar to diamond. Consequently a series of di�erent ombinations of C, B and N
an be investigated for the searh of new hard ompounds, provided that the following
simple ondition is respeted:

p � ZV (B) +m � ZV (C) + l � ZV (N) = 4n (2.6)

The values p, m, l and n are integers and ZV (B), ZV (C) and ZV (N) are the atomi
valene states (2s and 2p) for boron, arbon and nitrogen, respetively. Examples are
represented by the systems C3N4, C11N4, BN, B4C, BC2N et...

The attention has therefore been restrited only to those ompositions that are iso-
eletroni to arbon, i.e., diamond. This partiular hoie also derives from the fat that
all the substanes obeying this rule should likely posses the same attrating properties
of the existing hardest materials (e.g. ubi boron nitride and diamond).



Chapter 3

The onept of Hardness

3.1 Introdution

From the mehanial point of view we usually de�ne the hardness as the resistane
of the material to deformations. This property strongly depends on many parameters
like pressure, temperature, porosity, impurities, disloations and defets. It is usually
orrelated to various other physial properties (ioniity, melting point, band gap, ohesive
energy, et...) and an thus be studied indiretly. The hardness for a given sample
is usually determined by empirial methods suh as the srath test (Mohs sale) or
indentation by dropping a weight on the sample. The results are very useful but diÆult
to interpret and they often dependent on the sample and its state of purity. In the
Vikers test the hardness is estimated by measuring the indentation left by a diamond
stylus under a �xed load. This test and the srath test (irreversible methods) are quite
often employed experimentally to lassify the hardness of the various ompounds.

Many theoretial preditions on the hard materials have been made in the last two
deades by looking at the magnitude of the bulk modulus, B, [26, 27, 23, 28, 12, 29℄.
However, in 1977 A. P. Gerk [30℄ has already suggested that the shear modulus, G, whih
de�nes the resistane to reversible deformation upon shape hange, might be a better
preditor of the hardness. More reently, D. M. Teter [22℄ showed that for a wide variety
of materials the shear modulus is really more orrelated to the Vikers hardness than
the bulk modulus (further details are given in Setion 8.2.4, p. 53). The hardness of
rystalline materials thus beomes better de�ned by taking into aount the disloation
theory, i.e., by measuring how readily a large number of disloations are generated and
are able to move throughout the solid in response to the shear stresses.

In the following subsetions we show how to desribe the hardness of solids with the
alulation of the bulk modulus, elasti onstants and shear modulus.

9
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3.1.1 Measure of the resistane upon volume hange in solids

The bulk modulus measures the resistane to the volume hange in solids and provides
an estimation of the elasti response of the material to an external hydrostati pressure.
The B(V ) value is related to the urvature of E(V ),

B(V ) = �V �P

�V
= V

�2E

�V 2
(3.1)

where V is the volume of the unit ell, E(V ) is the energy per unit ell at volume V , and
P (V ) is the pressure required to keep the unit ell at volume V . Sine the alulations

an only provide a restrited set of energies E(Vi), the seond derivative, �2E
�V 2 , must be

approximated. The least squares �t of the urves E vs. V has been performed in this
Thesis by using the �rst three terms of the Birh equation [31℄:

E(V ) = E(Vo) +
9

8
VoB

"�
Vo

V

� 2
3

� 1

#2
+

9

16
B

�
B

0 � 4
�
Vo

"�
Vo

V

� 2
3

� 1

#3
+

NX
n=4

n

"�
Vo

V

� 2
3

� 1

#n
; (3.2)

where Eo, Vo, B and B
0

are the equilibrium energy, volume, bulk modulus and pressure
derivatives of the bulk modulus, respetively. In the above summation the n symbol
represents the total ontration terms [32℄, whilst the maximum order of the �t is sym-
bolised by the N index. The Eq. 3.2 is normally employed by assuming the following
trend: the larger the value of B, the harder is the material. The magnitude of B0 is
generally utilised to desribe the variation of the hardness with respet to a given hange
of the pressure (�P).

Di�erent semiempirial relations suh as �nite stress-strain have been proposed to
desribe the so-alled Equation of State (EOS) (see Ref. [33℄ and Refs. therein). Saling
experimental ompression data for measured isotherms of di�erent sorts of solids the
EOS is known. The above Birh type equation of state is a well tested �tting form
able to desribe the P , V , T data for a wide variety of solids. The main assumption
made in its utilisation is that no phase transition ours during the ompression of the
material. Despite the existene of di�erent varieties of EOS, the alulations of the bulk
modulus have mostly been performed in this Thesis by using the Birh type equation.
Sine suh a �tting form provides good results for systems like diamond and -BN I
thought worthwhile to use the same equation for the investigation of new hypothetial
phases for whih the experimental data are not yet available. Furthermore, by doing this
a homogeneous analysis of the results beomes possible with respet to the previously
ahieved theoretial and experimental results.
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3.1.2 Resistane to reversible deformation upon shape hange

In the study of mehanial strength the elastiity of solids, i.e., the response of a material
to applied fores, must be taken into aount. The fores are desribed by tensors alled
stresses whih determine the diretion of the fore and the plane to whih it is applied.
The responses in terms of relative hanges in dimensions or shape are alled strains and
they are also given by tensors. The ratio stress/strain is alled elasti modulus. For small
stresses the modulus is onstant and the material behaves elastially so that it returns to
the original ondition when the stress is removed. For large stress the sample undergoes
a permanent or plasti deformation. When the fore ats only in one dimension the stress
is alled ompressional, and when it ats in all diretions the stress is hydrostati. In the
shearing stress, fores at to move parallel planes of the solid so that at the mirosopi
level these stresses ause the gliding of planes of atoms over eah other. This is the easiest
way for a solid to hange its shape and the fore needed (hardness) depends very muh
on the presene of rystal defets. Edge and srew disloations are the most important
defets for gliding motion. An applied shearing stress will ause the disloations to move
throughout the rystal.

Aording to the �nding of A. P. Gerk and D. M. Teter, the hardness of the solids
has mostly been investigated in this Thesis by omputing the value of the isotropi
shear modulus. This magnitude an be expressed as a linear ombination of a set of
elasti onstants, ij , and is onsidered nowadays as the best hardness preditor for
solids. The ij onstants determine the response of the rystal to external fores and
provides information about the bonding harateristis between adjaent atomi planes,
anisotropi harater of the bonding and strutural stability. Eah of the elasti onstants
is a measure of hardness for a partiular kind of unit ell deformation.

Calulation of the elasti onstants: ubi system as a simple example

The basi problem in alulating elasti onstants from ab initio methods is not only the
demand of aurate alulational shemes for evaluating the total energy of the solid but
also the massive and onerous omputations implied in the estimation of the entire set of
the inequivalent ij . For instane, when the symmetry of the system is dereased, the
number of independent elasti onstants expands and a larger number of distortions is
neessary to ompute the full set of ij [34℄. These onstants an be dedued by applying
small strains to the equilibrium lattie and then determining the resulting hange in the
total energy. In partiular we alulate the linear ombinations of the elasti onstants
by straining the lattie vetors R aording to the rule ~R = R � D. The matrix D
represents the symmetri distortion matrix whih ontains the strain omponents and ~R
is the matrix that ontains the omponents of the distorted lattie vetors. In order to
onserve the elasti limit of the rystal, only small lattie distortions must be applied
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(e.g. strains within �1.5 %).
In ubi materials there are only three inequivalent elasti onstants: 11, 12 and 44.

These values an be estimated by alulating the total energy of the system as a funtion
of the shears desribed below [35℄. For 11 and 12 the following shear, D1, is onsidered,

D1 =

0
B�

1 + Æ 0 0
0 1 + Æ 0
0 0 1

(1+Æ)2

1
CA (3.3)

where the z axis is modi�ed and the x and y axes are kept the same in a volume onserving
way. The variation of the strain energy density (U = Energy=V olume) as a funtion of
the shear Æ is desribed with the following equation,

U = 6C 0
Æ
2 +O(Æ3) (3.4)

with C 0 = 1
2
(11 � 12). From the alulation of C 0 and the bulk modulus, B =

1
3
(11 + 212), one an evaluate the �rst two elasti onstants. With the same proe-

dure, but onsidering the following shear,

D2 =

0
B�

1 Æ 0
Æ 1 0
0 0 1

(1�Æ2)

1
CA (3.5)

the 44 onstant an be alulated from the equation,

U = 244Æ
2 +O(Æ4): (3.6)

Isotropi shear modulus The isotropi shear modulus, GIso, was �rstly expressed
by A. Reuss as long ago as in 1929 [36℄. In the Voigt's approximation the equation takes
the following form:

GIso =
1

15
[(11 + 22 + 33)� (23 + 31 + 12) + 3(44 + 55 + 66)℄ (3.7)

For the speial ase of a ubi symmetry the above relation translates into the form of

G =
1

15
(311 � 312 + 944) : (3.8)

Therefore, after having aomplished the alulation of the whole set of single rystal
elasti onstants, it is possible to estimate (for all the materials) the elasti shear moduli
for a polyrystalline1 solid by simply applying the above relation (Eq. 3.7). Aording
to the �nding of A. P. Gerk [30℄ and D. M. Teter [22℄, the larger is the value of the
alulated G, the harder should be the material.

1In general, a single rystal is more diÆult to prepare than a polyrystalline material. As a matter

of fat, most of the available experimental elasti moduli refer to polyrystalline samples.



Chapter 4

Density Funtional Theory

4.1 Introdution

Condensed matter physis and materials siene are basially related to the understand-
ing and exploiting the properties of systems of interating eletrons and atomi nulei. In
priniple, all the properties of materials an be addressed given suitable omputational
tools for solving this quantum mehanis problem. In fat, through the knowledge of the
eletroni properties it is possible to obtain information on strutural, mehanial, ele-
trial, vibrational, thermal and opti properties. However, the eletrons and nulei that
ompose materials onstitute a strongly interating many body system and unfortunately
this makes the diret solution of the Shr�odinger's equation an impratial proposition.
As stated by Dira in the far 1929 [37℄, progress depends mostly on the elaboration of
suÆiently aurate and approximate tehniques.

The development of density funtional theory and the demonstration of the tratabil-
ity and auray of the Loal Density Approximation (LDA) represents an important
milestone in ondensed matter physis. The DFT of Hohenberg and Kohn [38℄ was
adopted by the LDA whih was �rstly developed and applied by Slater [39℄ and his o-
workers [40℄. First priniples quantum mehanial alulations based on the LDA have
beome one of the most frequently used theoretial tools in materials siene. Nonethe-
less, the great ontribution of the loal density approximation alulations remained
limited until the late 1970's when several works have demonstrated the auray of the
approah in determining properties of solids [41, 42, 43, 44℄. Even though it has been a
great deal to state why the LDA should or should not be adequate for alulating prop-
erties of materials, there is however no doubt that the most onvining arguments have
been derived from the diret omparison of alulations with experiments. In partiular,
despite its simpliity the loal density approximation has been very suessful in desrib-
ing materials properties during the last deades. However, it is worth to note that there

13
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are also situations where the above approah do not lead to suÆiently aurate results.
This an be the ase when the di�erenes in the total energy, whih are usually relevant
in alulating strutural properties and binding, are to be estimated very aurately. As
a matter of fat, small inauraies may have here a dramati e�ets. In general, LDA
su�er from more or less well-known failures and therefore there have during the last
deade been several attempts to go beyond this loal approximation by inluding e�ets
depending on the variation of the eletron density.

Nowadays, improved theoretial shemes and the rapid growth in omputing failities
have aused many types of systems and properties to be studies suessfully with density
funtional methods. In the next following Setions we briey resume the fundamental
onepts whih are at the base of this important and fasinating theory.

4.2 The basi priniples of the method

The theorem of Hohenberg and Kohn is at the base of the DFT and states that the total
energy, E, of a non-spin-polarised system of interating eletrons in an external potential
is given exatly as a funtional of the ground state eletroni density, �.

E = E [�℄ (4.1)

They further showed that the true ground state density is the density that minimises
E [�℄ and that the other ground state properties are also funtionals of the ground state
density. The extension to spin-polarised systems is also possible where E and the other
ground state properties beome funtionals of both the up and down spin densities.

E = E [�"; �#℄ (4.2)

The Hohnenberg-Kohn theorem provides no guidane to the form of E [�℄, thus the utility
of DFT depends on the disovery of suÆiently aurate approximations. In order to do
this, the unknown funtional E [�℄ is rewritten as the Hartree total energy plus another
smaller unknown funtional alled exhange-orrelation (x) funtional, Ex [�℄.

E [�℄ = Ts [�℄ +Eei [�℄ +EH [�℄ +Eii [�℄ +Ex [�℄ (4.3)

In Eq. 4.3 Ts [�℄ represents the single partile kineti energy while Eei [�℄ denotes the
Coulomb interation energy between the eletrons and the nulei. The term Eii [�℄ arises
from the interation of the nulei with eah other and EH [�℄ is the Hartree omponent
of the eletron-eletron energy.

EH [�℄ =
e2

2

Z
d
3rd3r0

� (r) � (r0)

j r� r0 j (4.4)
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In the LDA, Ex [�℄ is written as

Ex [�℄ =

Z
d
3r� (r) "x (� (r)) (4.5)

where "x (�) is approximated by a loal funtion of the density, whih usually reprodues
the known energy of the uniform eletron gas. Re�nement of the LDA are the so-alled
generalised gradient approximation (GGA) and the weighted approximation (WDA). An
expression similar to Eq. 4.5 is used in the GGA where the "x (�) is replaed by a
loal funtion of the density and the magnitude of its gradient, "x (�; j r� j). From
the inorporation of the additional information ontained in the loal gradient a better
desription of the system is expeted [45, 46, 47℄. Several di�erent parameterisations of
the GGA funtional have been proposed [47℄ and tested on a wide variety of materials.
The GGA improve signi�antly the ground state properties of light atoms, moleules
and solids and generally tends to produe larger equilibrium lattie parameters and band
gaps with respet to the LDA.

A more sophistiated approah is the WDA that inorporates true non-loal infor-
mation through Coulomb integrals of the density with model exhange orrelation holes
[48, 49, 50℄. It ameliorates greatly the energies of atoms and for the diamond strutures
of Si and Ge yields bulk properties that are muh improved as well. Nonetheless, the
WDA is more demanding omputationally than the LDA or GGA, and aordingly few
WDA studies have been reported for solids.

Following the Kohn and Sham indiations [51℄, the eletron density an be written
as a sum of single partile densities. Given the funtional Ex the ground state energy
and density an be obtained by the self-onsistent solution of a set of single partile
Shr�odinger-like equations, known as the Kohn-Sham equations with a density dependent
potential,

(T + Vei (r) + VH (r) + Vx (r))'i (r) = �i'i (r) (4.6)

where the density is given by a Fermi sum over the oupied orbitals.

� (r) =
X
o

'
�

i (r)'i (r) (4.7)

The 'i are single partile orbitals, �i are the orresponding eigenvalues, T is the kineti
energy operator, Vei is the Coulomb potential due to the nulei, VH is the Hartree
potential and Vx is the exhange orrelation potential. VH and Vx depend on � as
follows:

VH (r) = e
2

Z
d
3
�
r0
� � (r)

jr� r0j (4.8)



16 Chapter 4: Density Funtional Theory

and

Vx (r) =
ÆEx [�℄

Æ� (r)
(4.9)

In this framework, a alulation requires the self-onsistent solution of equations 4.6 and
4.7. This means that a ertain density has to be found suh that it yields an e�etive
potential that, inserted into the Shr�odinger-like equations, yields orbitals that an re-
produe it. For this reason, instead of faing-up with the problem of solving a many-body
Shr�odinger equation, using DFT we an now have the easier problem of determining the
self-onsistent solution to a series of single partile equations. In solids, a further simpli-
�ation that failitates DFT alulations is provided by the Bl�oh's theorem, where the
harge density and the single partile KS Hamiltonian have the periodiity of the lattie.
Thus KS orbitals with di�erent Bl�oh momenta are oupled only indiretly through the
density dependent potential. Therefore, in DFT based alulations, the single partile
KS equations may be solved separately on a grid of sampling points in the symmetry
irreduible wedge of the Brillouin zone and the resulting orbitals used to onstrut the
harge density (this is not the ase, for example, in Hartree-Fok methods).

As already mentioned the great advantage of the density funtional approah is that
the resulting single-partile equations are omputationally simpler to solve then the equiv-
alent Hartree-Fok equations. This makes possible to onsider systems that are more
omplex (i.e. larger size or ompliate struture) then those treated by the Hartree-Fok
derived methods.

4.3 Single partile Kohn-Sham equations

Depending on the representations that are used for density, potential and KS orbitals, dif-
ferent DFT based eletroni struture methods an be lassi�ed. Many di�erent hoies
are made in order to minimise the omputational and human osts of alulations, while
maintaining suÆient auray. A brief summary of the many possibilities to solve the
Shr�odinger's equation is given in Fig. 4.1. In this Thesis alulations have been mostly
onerned with two partiular approahes namely, planewave Pseudo-Potential (PP) and
the Linearized Augmented Plane-Wave (LAPW). Other simpler and faster methods, suh
as Augmented Spherial Wave (ASW) and the Linear MuÆn Tin Orbital (LMTO), have
also been employed in the study of arbon based hard materials. However, these ompu-
tational approahes are usually reliable only when applied to rystalline materials with
high symmetry and large ompatness.

The expliit use of a basis an be avoided in onstruting the KS orbitals by nu-
merially solving the di�erential equations on grids. However, it is important to note
that nearly all approahes that have been proposed for solids, inluding the PP and the
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Figure 4.1: Shemati representation of various DFT-based methods of alulation.

LAPW methods, do rely on a basis set expansion for the KS orbitals. Beause of this,
the disussion is here on�ned to methods that do use a basis in whih the KS orbitals
are:

'i (r) =
X

Ci��� (r) (4.10)

where the �� (r) are the basis funtions and the Ci� are the expansion oeÆients. Given
a hoie of basis, the oeÆients are the only variables in the problem, sine the density
depends only on the KS orbitals. Sine the total energy in DFT is variational, the solution
of the self-onsistent KS equations permits to determine the Ci� for the oupied orbitals
that minimise the total energy. In order to eliminate the unknown funtional Ts [�℄ the
total energy an be rewritten using the single partile eigenvalues:

E [�℄ = Eii [�℄ +
X
o

�i +Ex [�℄�
Z
d
3r � (r)

�
Vx (r) +

1

2
VH (r)

�
(4.11)

where the sum is over the oupied orbitals and �, VH and Vx are given by Eqs. 4.7,
4.8 and 4.9, respetively.

Density funtional alulations require the optimisation of the Ci� and the determi-
nation of the harge density (Fig. 4.2). This proedure is usually performed separately
and hierarhially. Using standard matrix tehniques it is possible to repeatedly deter-
mine the Ci� that solve the single Eq. 4.6 for a �xed harge density. Hene, given the
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basis, the Hamiltonian and the overlap matries, H and S, an be onstruted and the
following matrix eigenvalue equation,

(H� �iS)Ci = 0 (4.12)

is solved at eah k-point in the irreduible wedge of the Brillouin zone. The optimised

Compute V(r)

Solve Single Particle

KS Equations

Determine EF

K point loop

K point loop

Calculate (r)ρout

Converged ?
Yes

Done
No

Mix ,ρ ρout in

ρin

Figure 4.2: Flow-hart for self-onsistent density funtional alulations.

Ci� will yield the exat self-onsistent solution only if the true oupied KS orbitals an
be expressed as a linear ombination of the basis funtions. In the ase where they annot
be expressed exatly in term of the basis, an approximate optimal solution (i.e the one
that gives the lowest possible total energy for the basis) will be found. Therefore, the
quality of a basis set an be measured by omparing how muh the total energy evaluated
with the orbitals of Eq. 4.10 di�ers from the true KS energy.
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4.3.1 The basis sets

With the general term eÆieny we usually refer to the number of basis funtions needed
to ahieve a given level of onvergene, whereas with the bias we desribe whether or not
a basis ould favour ertain regions of spae over the others like, for example, being
more exible near the nulei than the interstitial regions. By looking at the diÆulty
in estimating the matrix elements, the simpliity of the basis is also de�ned. The basis
ompleteness indiates whether the basis an be improved by inreasing the number of
the funtions. Planewave sets are known to be ineÆient in the above sense for a large
part of solids. However, this is not neessary a defet sine it only reets the fat that
they are unbiased. Moreover, planewaves form a simple and omplete basis. Auray
an be reahed by inreasing the number of planewaves in the basis and the onvergene
of a alulation an be monitored by hanging the planewave ut-o�. Furthermore, due
to the simpliity of this basis the implementation of the planewave odes is relatively easy
and the matrix elements of many operators an be rapidly estimated. Many operators
an be made diagonal sine the planewaves expanded wavefuntions an be transformed
eÆiently from reiproal spae, i.e. oeÆients of the planewave expansion, to real
spae using Fast Fouries Transforms (FFT). In partiular, it is important to note that
the kineti energy and momentum operators are diagonal in reiproal spae and the
operation of the loal potentials is diagonal in real spae. Looking at the equation 4.10 it
is evident that the most eÆient basis set onsists of the KS orbitals themselves and an
exat alulation is thus ahieved using a basis set size equal to the number of oupied
orbitals. However, despite this possibility the KS orbitals are, in general, unknown at
the beginning of the alulation.

Atomi and MuÆn-tin orbitals are also ommon basis sets used in eletroni struture
alulations. Despite the fat that the rystal potentials are often di�erent from atomi
potentials (even lose to the nulei), a linear ombination of atomi orbitals (LCAO)
methods have been used suessfully for large systems. With this method, problems of-
ten arise when attempts are made in order to add large numbers of basis funtions to get
highly onverged alulations. Atomi orbitals entred at a single site are already om-
plete, thus the LCAO's whih have as well orbitals entred at eah site are over-omplete.
Owing to this problem the overlap matrix, S, in Eq. 4.12 beomes ill-onditioned for large
basis sets. MuÆn-tin orbitals derived basis sets are based on the solutions of the radial
Shr�odinger's equation and usually a better approximation to the rystal potential is
provided in the viinity of the site with respet to that used in onstruting LCAOs.
This basis set has been disussed in more details in the Setion 6.2.
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4.3.2 The Self Consistent Field in DFT

As shown by the theorem of Hohenberg-Kohn the total energy is variational and this
means that the true ground state density is that whih minimises the energy. When
the LDA approximation is introdued to the Ex [�℄ the true variational priniple does
not exists anymore and there is no guarantee that the energy obtained by minimising
the energy funtional will be higher than the exat ground state energy. Consequently,
the true ground state harge density will in general not minimise the approximate en-
ergy funtional. However, alulations an be done by knowing that minimising a good
approximation to the energy funtional, a good energy and density should be obtained.
The proedure is thus exat only for the true energy funtional.

Sine we do not know the form of the single partile kineti energy, Ts [�℄, in Eq.
4.3, the minimisation proeeds through the KS equations, where the variation is with
respet to the orbitals, or in a basis set expansion to the oeÆients Ci�. With a �xed
basis these are the only parameters that an be varied. The problem is to �nd the
oeÆients that minimise the energy funtional (Eq. 4.11) paying attention on keeping
the orbitals orthonormal to eah other. The diret minimisation of the total energy with
respet to the Ci� was proposed by Bendt and Zunger in 1982 [52℄ and is the ore of
the Car-Parrinello (CP) method [53℄. In spite of the omputational advantages, this
approah has not yet beome popular for methods that use non-planewave basis sets.
This is due to the omplexity of the optimisation problem where typially hundreds or
thousands of parameters are present even for small problems. Therefore, it is beause of
this ompliations that historially the standard self-onsisteny yle shown in Fig. 4.2
has been used to re�ne iteratively the density by alternately solving the Eqs. 4.6 and
4.7. For a given harge density the Eq. 4.12 is diagonalised (ensuring the orthonormal
orbitals) and an output harge density is onstruted from the eigenvetors using Eq.
4.7. This harge density is then mixed with the input to yield a re�ned input for the
next iteration. The simplest mixing sheme is represented by the straight mixing:

�
i+1
in = (1� �) �iin + ��

i
out (4.13)

The supersript refers to the iteration number and � is the mixing parameter. In order
to avoid the dereasing of the radius of onvergene with the inreasing, for example, of
the unit ell volume a more sophistiated mixing proedure whih takes into aount the
information from previous iterations is used. The onvergene is normally aelerated by
using the Broyden's method [54℄.
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Planewave Pseudo-Potential

methods

5.1 Introdution

The pseudo-potential (PP) approah employs a quantum mehanial desription of the
eletroni interations as spei�ed by the density funtional theory. This approah on-
sists basially of a pseudo-potential and planewaves oupled with a Fourier transform
tehnique. The above method appears extremely aurate and reasonably fast for mate-
rial modelling and espeially it has shown good ability in prediting ground state stru-
tures of ultra-hard materials [55℄. In partiular, two di�erent approahes, the loal density
approximation [56℄ and the generalized gradient approximation [57℄, have been widely
tested.

A general harateristi, ommon to all the PP methods, is that one the desription
of the eletroni interations has been ahieved, the fores ating on atoms an be easily
alulated, thus giving the possibility to determine the minimum energy position for
atoms belonging the unit ell. Using this proess, all the phases proposed in the next
following Chapters have been obtained by relaxing the initial rystalline strutures with
the planewave pseudo-potential approah. Suh a proedure is at the moment onsidered
the state-of-the-art in the modelling of the arbon based materials.

In our investigations we used the Vienna ab-initio simulation pakage (VASP) [58℄ for
the determination of the optimised geometries, relative stability and elasti onstants
of various arbon nitride and boron arbon nitride on�gurations. The alulations
have mostly been performed within the loal density approximation to the DFT [59℄
using the Ceperly-Alder [56℄ exhange orrelation funtional as parameterised by Perdew
and Zunger [60℄ and the pseudo-potential method desribed by Vanderbilt [61℄. Our
studies were exeuted by using an energy ut-o� of 434.8 eV for the planewave basis
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set and onverged with respet to the k-point integration. The tetrahedron method
with Bl�ohl orretions [62℄ was normally applied for both geometry relaxation and total
energy alulations. Brillouin-zone integrals were approximated using the speial k-point
sampling of Monkhorst and Pak [63℄.

5.2 Bl�oh's Theorem and Planewaves

The ions in a perfet rystal are arranged, at 0 ÆK, in a regular periodi way. Therefore
the external potential felt by the eletrons will also be periodi; the period being the
same as the length of the unit ell, `. That is, the external potential on an eletron at
r an be expressed as V (r) = V (r+ `). This is the requirement needed for the use of
Bl�oh's theorem. By using this theorem it is possible to express, see Eq. 5.1, the single
partile wavefuntion, �k, of the in�nite rystal in terms of wavefuntions at reiproal
spae vetors of a Bravais lattie.

�k (r+RL) = e
ikRL�k (r) (5.1)

In the above equation, k represents the rystal momentum and RL the diret lattie
vetor. The �rst term is the wave-like part, whereas the seond one is the ell peri-
odi part of the wavefuntion. The last term an be expressed by expanding it into
a �nite number of planewaves whose wave vetors are reiproal lattie vetors of the
rystal. Hene, the Bl�oh's theorem gives the boundary ondition for the single partile
wavefuntions. The following equation represents the general solution that satis�es these
boundary onditions, where G are the reiproal lattie vetors.

�k (r) = e
ikr
X
G

CG (k) eiGr = e
ikr

w (k; r) (5.2)

By the use of Bl�oh's theorem, the problem of the in�nite number of eletrons has now
been mapped onto the problem of expressing the wavefuntion in terms of an in�nite
number of reiproal spae vetors within the �rst Brillouin zone of the periodi ell, k.
This problem is dealt with the sampling the Brillouin zone at speial sets of k-points.
The eletroni wavefuntions at eah k-point are now expressed in terms of a disrete
planewave basis set. In priniple, this Fourier series is in�nite. However, the oeÆients

for the planewaves, CG (k), eah have a ertain kineti energy
�
�h2=2m

�
j k+G j2. The

planewaves with a smaller kineti energy typially have a more important role than those
with a very high kineti energy. Therefore, the introdution of a planewave energy ut-o�
redues the basis set to a �nite size. This kineti energy ut-o� will lead to an error in
the total energy of the system but in priniple it is possible to make this error arbitrarily
small by inreasing the size of the basis set by allowing a larger energy ut-o�. The
ut-o� that is used in pratie depends on the system under investigation.
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5.3 General Approximations

In most of the systems, the ore eletrons are strongly bound and do not respond to
the more rapid motions of the valene eletrons: they are essentially �xed. This is the
so-alled "frozen ore approximation". The pseudo-potential method is based on the
following approximations:

(1) We replae the strong ore potential by a pseudo-potential, whose ground state
wavefuntion, �PS , reprodues the all eletron wavefuntion outside a seleted ore
radius (see Fig. 5.1). By doing this we an now eliminate the ore states and the
orthogonalization in the valene wavefuntions.

(2) The resulting pseudo-wavefuntions �PS are usually smooth for many elements and
an be thus easily desribed using low G planewaves. The planewaves beome thus
a simple and eÆient basis for the pseudo-wavefuntions.

(3) We need to generate the pseudo-potential, and this is normally the more omplex
part of the method. This onstrution is usually more expensive then the alula-
tion itself.

5.4 Pseudo-Potentials

5.4.1 Norm onserving pseudo-potentials

A valid pseudo-potential should be soft, transferable and the pseudo-harge density should
aurately reprodue the valene harge density as muh as possible. With the term soft

it is meant that the expansion of the valene pseudo-wavefuntions should be allowed
by using few planewaves. Thus, the pseudo-potential should be as soft as possible. The
transferability is related to how muh a pseudo-potential, generated for a given atomi
on�guration, an reprodue others aurately. This is a quite important property for
solid state alulations, where the rystal and atomi potentials are di�erent. These
oniting goals an be solved by using the onept of norm onservation [64, 65℄. In this
way the pseudo-wavefuntions are made to be equal to the true valene wavefuntions
outside a ertain ore radius, r. For r < r the pseudo-wavefuntions di�er from the true
wavefuntions but the norm is fored to be the same, as shown in the following equation:

rZ
0

dr r
2
�
PS� (r)�PS (r) =

rZ
0

dr r
2
�
� (r)� (r) (5.3)

In the above equation the wavefuntions refer to the atomi referene state, thus a spher-
ial symmetry is imposed. The wavefuntion and eigenvalue are di�erent for di�erent
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φps
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V (r)
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Figure 5.1: Illustration diagram of the replaement of the "all-eletron" wavefuntion
and ore potential by a pseudo-wavefuntion and pseudo-potential.

angular momenta, l, and this means that the pseudo-potential should also be l depen-
dent. These kind of pseudo-potentials are alled "semi-loal" sine a di�erent VPS (r) is
generated for eah l values.

5.4.2 Ultrasoft Pseudo-Potentials (US-PP)

In 1990 Vanderbilt [61℄ introdued a new approah where the pseudo-wavefuntions are
fored to be equal to the all eletron wavefuntions outside the r, as in the onept of
norm onservation, but inside they are allowed to be as soft as possible. In order to
ful�ll this last point, the norm onservation onstraint was removed. Therefore, large
values of r an be used in this sheme and onsequently the planewave ut-o� needed in



5.4 Pseudo-Potentials 25

alulations an be greatly redued. However, the following drawbaks have to be taken
into aount:

(1) The pseudo-wavefuntions are not normalised, sine they are equal to the all-
eletron wavefuntions in the interstitial part (they have the same norm), but do
not have the same norm inside r. This introdues a non-diagonal overlap in the
seular equation.

(2) The pseudo-harge density is not alulated by solving
P
��� as in norm onserving

method. An augmentation term has to be added in the ore region.

(3) By removing the norm onservation the resulting pseudo-potentials beame less
transferable.

However, the pseudo-potentials proposed by Vanderbilt were introdued for use in large
sale alulations, for whih the ost of generating pseudo-potentials is nearly negligible
with respet to the ost of the alulations.

The total energy in the Vanderbilt's sheme is expressed as following:

E =
X
o

h�j jT + V
NL j�ji+

Z
d
3r V L (r) � (r) +

1

2

Z
d
3r d3r0

� (r) � (r0)

jr� r0j +Ex [�℄ +Eii (5.4)

The T term is the kineti energy operator, VL is the loal omponent of the pseudo-
potential and the �j are the pseudo-wavefuntions. For the VNL the following non loal
form is used

V
NL =

X
mn

D
0
nm j�ni h�mj ; (5.5)

where the pseudo-potential is haraterised by the �m funtions, the oeÆients D0
nm

and the loal omponent V L (r). For simpliity, in the above formula only one atom has
been onsidered. �m are expressed in an angular representation by spherial harmonis
times radial funtions, whih vanish outside r.

The pseudo-harge density � is given by the square of the pseudo-wavefuntions and
the augmentation inside the spheres.

� (r) =
X
o

"
�
�

j (r)�j (r) +
X
mn

Qmn (r) h�jj�ni h�mj�ji
#

(5.6)



26 Chapter 5: Planewave Pseudo-Potential methods

In the above Eq. 5.6 the term Qmn (r) indiates the loal funtions determined during
the generation of the pseudo-potential.

Using the variational priniple to Eqs. 5.4, 5.5 and 5.6, the seular determinant is

H j�ji = "jS j�ji (5.7)

with

H = T + Vx (r) + VH (r) + V
L (r) +

X
mn

Dnm j�ni h�mj (5.8)

and

S = 1 +
X
mn

qnm j�ni h�mj (5.9)

where 1 indiates the identity operator and

qnm =

Z
�

d
3rQnm (r) (5.10)

with the integral over the sphere de�ned by r. The Dnm are the D
(0)
nm with a sreening

term.

Dnm = D
(0)
nm +

Z
�

V (r) Qnm (r) (5.11)

where V denotes the loal potential given by the loal pseudo-potential plus the exhange
orrelation and Hartree potentials.

5.4.3 Generation of the US-PP

The generation of the ultra-soft pseudo-potentials starts with all-eletron atomi alu-
lations in a ertain referene on�guration. A set of referene energies, Elj, is seleted
through the range over whih band states will be alulated. The regular solution of the
radial Shr�odinger equation (�lmj (r) = ulj (r)Ylm (r)) is then solved within r at eah
Elj . A smooth pseudo-wavefuntion, �PSlmj (r) = ulj (r)Ylm (r), is generated for eah lmj

set providing that it mathes to �lmj at r. In the same way a smooth loal potential, VL,
that mathes the all-eletron potential outside r is determined. The following orbitals
are then onstruted:

j�lmji =
h
Elj � T � V

L (r)
i
j�lmji (5.12)
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If �PS and V L are equal to � and all-eletron potential respetively outside r and �

satis�es the Shr�odinger's equation at Eij, � assumes the zero value outside r. We an
now write down the Qnm (r) term knowing that it must aount for the di�erene between
the true harge density and ��PS�PS.

Qnm (r) = �
�

n (r)�m (r)� ��n (r) �m (r) (5.13)

The n and m indies run over the lmj set. Usually a smoothing is applied to Qnm in
order to failitate the representations of the harge density. The moments of the original
Qnm are preserved. In a similar way the j�ni are onstruted

j�ni =
X
m

�
B�1

�
mn

j�mi ; (5.14)

with Bnm = h�nj�mi. The rest of the omponents of the pseudo-potential, V L and Dnm

are determined by using the following identity,"
T + V +

X
nm

Dnm j�ni h�mj
#
j�ni = En

"
1 +

X
nm

qnm j�ni h�mj
#
j�ni (5.15)

with

Dnm = Bnm +Emqnm (5.16)

The D
(0)
nm are determined using Eq. 5.11 and the Hartree and exhange orrelation

ontributions are subtrated from V to obtain VL.

B C N

ARC 2s22p1 2s22p2 2s22p3

r;s 1.8 1.6 1.8
r;p 1.8 1.8 1.8
r;d 1.8 1.8 1.8

Table 5.1: Parameters determining the ultra-soft pseudo-potential used in this Thesis.
ARC represents the atomi referene on�guration and r;l (where l=s, p, d) the ut-o�
radii in atomi units.

During the self-onsistent iterations, the ontribution of the augmenting harge inside
the sphere hanges with the wavefuntions and ontributes to the potential used in the
Kohn-Sham equations. We an thus onsider the pseudo-potential as evolving during the
alulation. This e�et allows the use of very soft pseudo-potentials (large values of r) in
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the Vanderbilt sheme without a�eting the auray of the alulation. Extensive tests
of the auray, transferability and onvergene properties of ultra-soft pseudo-potential
for C, B and N were performed in Refs. [66, 67℄. In this Thesis, the parameters used for
the optimal pseudo-potential are given in Table 5.1.
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The Full Potential LAPW method

6.1 Introdution

In this Thesis, investigation of the eletroni properties (density of states, band struture,
eletron density maps and EELS spetra) were arried out with the density funtional
theory Full-Potential Linearized Augmented PlaneWave (FP-LAPW) program pakage
WIEN97 [68℄. The LAPWmethod is a very aurate alulational sheme for the eletroni
struture investigation in rystals. It is haraterised by the use of a basis set whih is
espeially adapted to the problem. This method is basially derived from the augmented
planewave (APW) approah of Slater [69, 70℄ where the spae is divided into regions and
di�erent basis expansions are used in the various domains (Fig. 6.1). In partiular, radial
solutions of Shr�odinger's equation are employed inside non overlapping atom entred
spheres and planewaves in the remaining interstitial zone. The introdution of suh a
basis set is due to the fat that lose to the nuleus the potential and wavefuntions are
very similar to those in an atom, while between the atoms are smoother.

' (r) =

8>>><
>>>:

1

1=2

P
GCG ei(G+k)r r 2 Interstitial

P
`mA`mu` (r)Y`m (r) r 2 Sphere

(6.1)

In the above relations ' is the wavefuntion, 
 the ell volume and u` the regular solution
of Eq. 6.2. CG and A`m are expansion oeÆients, E` is a parameter (set equal to the
band energy) and V the spherial omponent of the potential in the sphere."

� d2

dr2
+

` (`+ 1)

r2
+ V (r)�E`

#
ru` (r) = 0 (6.2)

The use of these funtions has been motivated by Slater by noting that planewaves are
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Sphere

Sphere

Interstitial

Interstitial

Figure 6.1: Adaptation of the basis set by dividing the unit ell into atomi spheres and
interstitial regions.

the solutions of the Shr�odinger's equation in a onstant potential and radial funtions
are solutions in a spherial potential. This approximation to the potential is alled
"muÆn-tin" (MT) and results very good for lose paked materials like f and hp.

Sine the ontinuity on the spheres boundaries needs to be guaranteed on the dual
representation de�ned in Eq. 6.1, onstraint must be imposed. In the APW method this
is done by de�ning the A`m in terms of CG in the spherial harmoni expansion of the
planewaves.

A`m =
4�i`


1=2u` (R)

X
G

CG j` (j k+ g j R) Y �

`m (k+G) (6.3)

The oeÆient of eah `m is mathed at the sphere boundary and the origin is taken
at the entre of the sphere (R is the sphere radius). The A`m are determined by the
planewave oeÆients (CG) and the energy parameters E`, whih are the variational
oeÆients in APW method. The funtions labelled G are the augmented planewaves
(APWs) and onsist of single planewaves in the interstitial zone whih are mathed to
the radial funtions in the spheres.

A more exible and aurate band struture alulational sheme is the LAPW
method where the basis funtions and their derivatives are made ontinuous by mathing
to a radial funtion at �xed E` plus its derivative with respet to E`.
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6.2 The LAPW basis

The basis funtions inside the spheres are linear ombinations of a radial funtions
u` (r)Y`m (r) and their energy derivatives1. The u` are de�ned as in the APW method
(Eq. 6.2) and the energy derivative, _u` (r)Y`m (r), satis�es the following:

"
� d2

dr2
+

` (`+ 1)

r2
+ V (r)�E`

#
r _u` (r) = ru` (r) (6.4)

These funtions are mathed to the values and derivatives of the planewaves on the sphere
boundaries. Suh augmented planewaves are the LAPW basis (LAPWs),

' (r) =

8>>><
>>>:

1

1=2

P
G CG ei(G+k)r r 2 Interstitial

P
`m [A`mu` (r) +B`m _u` (r)℄ Y`m (r) r 2 Sphere

(6.5)

where the B`m are oeÆients for the energy derivative analogous to the A`m. The
LAPWs are planewaves in the interstitial zone of the unit ell whih math the numerial
radial funtions inside the spheres with the requirement that the basis funtions and their
derivatives are ontinuous at the boundary. In this method no shape approximations are
made and onsequently suh a proedure is often alled "full-potential LAPW" (FP-
LAPW). The muh older muÆn-tin approximation orresponds to retain only the L=0
and M=0 omponent in Eq. 6.5. A spherial average inside the spheres and the volume
average in the interstitial region is thus taken.

Inside atomi sphere a linear ombination of radial funtions times spherial harmon-
is, Y`m (r), is used. The linear ombination of u` (r) and _u` (r) onstitute the so-alled
"linearization" of the radial funtion. u` (r) and _u` (r) are obtained by numerial inte-
gration of the radial Shr�odinger equation on a radial mesh inside the sphere.

The LAPWs have more variational freedom inside the spheres than APWs. This
greater exibility is due to the presene of two radial funtions instead of one; non-
spherial potentials inside spheres an be now treated with no diÆulty. There is however,
a prie to be paid for the additional exibility of the LAPWs: the basis funtions must
have ontinuous derivatives and onsequently higher planewave ut-o�s are required to
ahieve a given level of onvergene. Further, the asymptote problem2 found in the APW
method is now overome by the presene of the non-zero _u`m (R) value. The solution of

1u` (r)Y`m (r) and _u` (r)Y`m (r) are the augmenting funtions.
2u`m (R) appears in the denominator of expression (6.3) and if zero leads to a deoupling between

planewaves and radial funtions. In the viinity of the asymptote the seular determinant is strongly

varying.
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the KS equations are expanded in this ombined basis aording to the linear variation
method:

 k =
X
n

n'kn (6.6)

and the oeÆients n are determined bu the Rayleigh-Ritz variational priniple. In the
WIEN97 pakage the total energy is alulated aording to the Weinert sheme [71℄. The
onvergene of the basis set is ontrolled by the ut-o� parameter RmtKmax (determining
the matrix-size of the system), whih usually assumes values in between 6 and 9. The
Rmt represents the smallest of all atomi sphere radii in the unit ell and Kmax

3 is the
magnitude of the largest K vetor (planewave ut-o�).

3K2
max represents the planewave ut-o� parameter in Ry used in pseudo-potential alulation.



Chapter 7

The ASW method

7.1 About linear methods

Among the prime methods for the omputation of the band struture the augmented
planewave [72℄ in 1965 and KKR (Korringa Kohn Rostoker) [73℄ in 1954 were known at
the time of their derivation to be highly time onsuming. A solution to this ontextual
diÆulty was brought by the so-alled linear methods whose impat beame inreasingly
dominant within the ommunity of physiists. Therefore, the analysis of more realisti
and omplex systems was made possible with the existing omputational means. The
augmented spherial wave, the linear muÆn tin orbital and the linearized augmented
planewave are among suh linearized methods. This implies that the energy dependene
of the wave funtion is lifted by expressing it with a produt of energy dependent oef-
�ients a(k), on whih the variational proedure is onduted, and energy independent
radial funtions �(r).

7.1.1 ASW and LMTO methods

The ASW method was originally derived in 1979 by Williams et al. [74, 75℄. This
omputational approah shows very lose similarities with the LMTO method introdued
earlier by Andersen [76℄, though the formalism is somehow di�erent. The muÆn-tin
approximation is employed in both ases and refers to non overlapping atomi spheres
whih well desribe ompat lose paked solids suh as the f, b and hp strutures
of metals and alloys. It is obvious that the remaining interstitial region is in these speial
ases very small. Nevertheless, properties have to be omputed expliitly beside the intra-
atomi region. This is atually done through planewaves as in the FP-LAPW method
[68℄ whih despite its high preision remains very time onsuming even with the atual
omputers. The inontestable general advantages arising with the use of ASW or LMTO
methods are found in their simple interpretation and on the possibility to perform very

33
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fast alulations. In partiular, these methods are exellent for a �rst general desription
of the eletroni properties of solids. However, in spite of these great advantages, a
ertain limited preision haraterise these methods and often their use is irumsribed
to the desription of ompat systems (empty spheres are needed to desribe less ompat
strutures).

7.1.2 The ASA and its impliations

To a good approximation the interstitial region an be negleted if the MT spheres are
enlarged so that their volume beomes idential to the unit ell volume. The MT spheres
beome then Wigner-Seitz spheres [77℄. This approximation is alled the Atomi Sphere
Approximation, ASA, and is used by both methods. The LMTO approah beomes,
for example, the LMTO-ASA method in order to di�erentiate from the full potential
method, FP-LMTO, derived later by Savrasov et al. [78℄. The unit ell is thus divided
into atomi spheres in a way that their total volume equals the volume of the ell.

X
i


i :=
X
i

4

3
�S

3
i

!
= 
 (7.1)

where Si is the radius of the sphere i and 
i; the volume of the unit ell. Another
assumption is embedded within the ASA: the potential and the eletron density are
spherially averaged. This an be a drawbak when eletri �eld gradients or eletron
density plots are to be produed.

7.1.3 Solution of the wave funtion

Both ASW and LMTO-ASA methods use envelop funtions antered on the atomi sites.
These are subjeted to the Laplaien whih is almost the same for both methods:

(� + �0)�L(r) = 0 (7.2)

where L refers to the n and l quantum numbers and �0 is an energy parameter put to zero
in LMTO and to a small (�xed) negative value (�0 � -0.015 Ry) in ASW. It determines
the degree of loalisation of the envelop wave funtion given by spherial Hankel funtions
h
+
l (�r), � =

p
�0.

7.2 Further formalism with the ASW method

The ASW method provides an approximate solution to the single-partile Shr�odinger
equation:

[�r2 + V (~r)� �℄	(~r; �) = 0 (7.3)
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The eletroni struture problem is solved within the DFT approah via a repetitive solu-
tion of the above equation (self-onsistent proedure). The wavefuntions 	(~r; �) is deter-
mined by developing an expansion in energy-dependent, Cn(�), and energy-independent,
Xn(~r) oeÆients:

	(~r; �) =
X
n

Cn(�)Xn(~r) (7.4)

With the above expansion of 	(~r; �) in energy-independent base funtions, the solution
of the Shr�odinger equation (Eq. 7.3) redues to a matrix eigenvalue problem for whih
eÆient numerial proedure an be applied.

Another important feature of this approah involves the basis set Xn(~r). In partiular
the intra- and inter- atomi part of the alulation an be deoupled and the orthogonal-
ization and ore-state readjustment an be done without the inlusion of the ore states
in the basis set used to expand the states of the interatomi interation. The removing
of the ore states from the interatomi basis set permits to inrease the eÆieny of the
alulational sheme. The augmented spherial wave (ASW's) are the seleted energy-
independent single-partile basis set. In the intra-atomi portion of a polyatomi system,
the strong potential auses 	(~r; �) to vary rapidly, whereas in the inter-atomi region a
slowly varying (weak potential) wavefuntion is found. From this piture the inter-atomi
region an be thus expanded in planewaves (APW method), however treating all portion
of the interstitial volume equally is a "luxury for whih the prie is relatively ineÆieny".
A less exible (and less aurate) LCAO-like treatment of the inter-atomi region is made
by assuming the solutions of the Shr�odinger's equation to be a linear ombination of
atomi-orbital "tails" extending out of eah of the intra-atomi region.

	(~r; �) =
X
L�

CL�(�)HL(~r � ~R�) (7.5)

where ~R� are nulear position and CL�(�) are the energy-dependent expansion oeÆients.
The atomi-like funtions HL(~r) are spherial waves as follow,

HL(~r) � i
l
k
l+1

YL(r̂)h
+
l (kr) L = l;m (7.6)

with YL(r̂) representing the spherial harmonis and h+l (x) the outgoing spherial Hankel
funtion.

7.2.1 The augmentation proess

Eah of the intra-atomi region is desribed by a very strong potential. The e�etive
potential an be thus approximated with a spherial symmetry and the basis funtions
onstruted by solving the radial Shr�odinger's equation. A omparison between the
APW's and ASW's is shown in Fig. 7.1. The two bases are very similar, even though
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Figure 7.1: Comparison between the augmented plane (APW) and spherial (ASW)
waves. This Figure has been taken from the original work of A. R. Williams, J. K�ubler
and C. D. Jr. Gelatt [74℄.

a single ASW an be identi�ed with a partiular atom, like an atomi orbital. The
spherial wave HL(~r) is ontinued into the intra-atomi region due to the partiular
linear ombination of the Shr�odinger's equation whih joins smoothly to HL(~r) at the
interfae of the intra- inter- atomi region. Therefore, for all r� less than the sphere
radius S� it is possible to replae HL(~r�) with its augmented ounterpart ~HL(~r�), where

~HL(~r�) = i
l
YL(r̂�)~hl(r�); (7.7)

and ~H(~r�) is the solution of the intra-atomi Shr�odinger equation,

[�r2 + V (~r� + ~R�)� �
(H)
ln ℄ = 0: (7.8)

The aforementioned equation an be rewritten as 
� 1

r�

�2

�r2�
r� +

l(l + 1)

r2�
+ V (~r� + ~R�)� �

(H)
l�

!
~hl(r�) = 0; (7.9)

and V (~r� + ~R�) is assumed to depend only on r� for r� < S� . The ontinuity and
di�erentiability through the spherial surfae r� = S� is guaranteed by the possibility of

hoosing the ~hl(r�) and �
(H)
l� ,�

�

�r�

�n
[~hl(r�)� k

l+1
h
+
l (kr�)℄r�=S� = 0; n = 0; 1: (7.10)
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Sine the e�etive potential vary strongly on the intra-atomi region, the augmentation
of the funtion H(~r�) must be operated not only inside the sphere entred at R� but in
all other intra-atomi regions, R�0 , where � 0 6= �. Suh an augmentation is omputed by
expanding with the Bessel funtions, JL(~r

0), entred at the R�0 site

HL(~r�) =
X
L0

J
0

L(~r
0

�)BL0L(~R�0 � ~R�); (7.11)

where
JL(~r) = i

l
k
�l
YL(r̂)jl(kr) (7.12)

and jl(kr) is the spherial Bessel funtion. BL0L(~R) are the struture onstants developed
in the KKR method [73℄:

BLL0(~R) = 4�
X
L00

ILL0L00k
l+l0�l00

HL00(~R) (7.13)

and

ILL0L00 �
Z

dr̂YL(r̂)YL0(r̂)YL00(r̂): (7.14)

are the Gaunt's oeÆients. The augmentation of the HL(~r � �) on the neighbours of
R�0(j~r � ~R�0 j � S�0) redues to the augmentation of the jl(kr�0),

~HL(~r � ~R�) =
X
L0

~J 0

L(~r � ~R
0

�)BL0L(~R�0 � ~R�); (7.15)

where
~JL(~r

0

�) � i
l
YL(r̂

0

�)~jl(r
0

�) (7.16)

and ~jl(r
0

�) is the solution of the radial Shr�odinger equation relative to the sphere entered
at R0

� ,  
� 1

r0�

�2

�r2�0

r
0

� +
l(l + 1)

r02�
+ V (~r0� + ~R

0

�)� �
(J)
l�0

!
� ~jl(r

0

�) = 0; (7.17)

that joins smoothly the spherial Bessel funtion at r0� = S0

� .�
�

�r0�

�n

[~jl(r
0

�)� k
l
jl(kr

0

�)℄r0

�=S
0

�
= 0; n = 0; 1 (7.18)

Proeeding in the same way, as in the augmentation of h+l (kr), the above ontinuity

ondition spei�es the normalisation of ~jl(k�
0) and the energy �

(J)
l�0

. The augmented

spherial waves ~HL(~r � ~R) are now de�ned in all the regions and are ontinuous, energy
independent and ontinuously di�erentiable. With suh a basis set funtions, it beomes
possible to expand the solutions of the Shr�odinger's equation.

	(~r; �) =
X
L;�

CL;�(�) ~HL(~R�) (7.19)
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7.2.2 The variational method of Rayleigh-Ritz

Starting from H	 = E	 the eigenenergy � and expansion oeÆients CL�(�) (Eq. 7.19)
may be evaluated with the Rayleigh-Ritz variational method. The seular matrix from
the Rayleigh-Ritz proedure looks as follow:

X
L0;�0

(h� ~LjHj~L0
�
0i � �h� ~Lj~L0

�
0i)CL0�0(�) = 0 (7.20)

where H � �r2 + V (~r) and h� � � j � � �i is the integral extending over the whole spae:

h� ~Lj~L0
�
0i �

Z
d
3
r ~H�

L(~r � ~R�) ~HL0(~r � ~R�0) (7.21)

The approximation of the intra-atomi regions with atomi spheres (ASA) gives:

h� ~LjHj~L0
�
0i =

X
�00

h� ~LjHj~L0
�
0i�00 (7.22)

In order to improve the onvergene of the numerial alulation1 the above equation is
modi�ed as follow:

h� ~LjHj~L0
�
0i = h�LjH0jL0

�
0i+

X
�00

(h� ~LjHj~L0
�
0i�00 � h�LjH0jL0

�
0i�00) (7.23)

where H0 � �r2 denotes the free-partile Hamiltonian. The �nal thing that has to be
noted is that in all the integrals of the matrix elements the ASW is an eigenfuntion of the
Hamiltonian. The integrals over the atomi spheres (Eq. 7.23) are of three types, one-
enter, two-enter or three-enter depending on the number of the two ASW's entered
in the sphere. Four di�erent ontributions are found:

� The �rst expression on the right side of the Eq. 7.23 and the seond member within
the parenthesis are relatively easy to solve sine the term is an eigenvalue of H0.

h�LjH0jL0
�
0i = k

2h�LjL0
�
0i (7.24)

The representation of the matrix elements requires an integral over all spae in-
volving unaugmented spherial waves, whih an be solved analytially.

� The one-enter ontributions are those in whih both ASW's are entred in the
sphere (� = � 0 = � 00). Only augmented Hankel funtions are onsidered:

h� ~LjHj~L0
�
0i� = �

(H)
l� h ~HLj ~HLi�ÆLL0 (7.25)

1The e�etive potential has been taken to be zero in the interstitial region so that the matrix element

an be written as in Eq. 7.23. For details see Ref. [74℄.
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� The two-entres integrations (� = � 00 6= � 0 or � 6= � 00 = � 0), require the expansion
of one of the two ASW's. Therefore, both augmented Hankel and Bessel funtions
are taken:

h� 00 ~LjHj~L0
�
0i�00 = �

(J)
l�00
h ~HLj ~JLi�00BLL0(~R�00 � ~R�0) (7.26)

and
h� ~LjHj~L0

�
00i�00 = �

(H)
l0�00

h ~JL0 j ~HL0i�00B
y

LL0
(~R� � ~R�00) (7.27)

where
B

y

LL0
(~R� � ~R�0) � B

�

LL0(~R� � ~R�0): (7.28)

� Finally in the three-enter ontributions (� 6= � 0 6= � 00), only the augmented Bessel
funtions are used. In this ase neither of the two ASW's involved in the ma-
trix element are entred in the intra-atomi region over whih the integration is
performed.

h� ~LjHj~L0
�
0i�00 =

X
L00

B
y

LL00
(~R� � ~R�00)�

(J)

l00�00
� h ~JL00 j ~JL00i�00BL00L0(~R�00 � ~R�0) (7.29)

The above individual integrals an be ombined to omplete the seular matrix. Integrals
involving augmented funtions need only one-dimensional numerial integration and those
ontaining unaugmented spherial Bessel funtions an be found in the work of Morse
and Feshbah [79℄.



Chapter 8

Carbon Nitrides

8.1 Introdution

Networks made of ovalently bonded arbon nitride are expeted to show remarkable
physial properties suh as high hardness, wide band gap and high thermal ondutivity.
They an be used as a protetive oating on hard diss and reorder heads and are being
tested for several other tribologial appliations. Other utilisation areas an be found,
for example, in at-panel display industry. The possibility to synthesise nanotubes- [80℄
and nano�bers-like [81, 82, 83℄ CNx strutures in a solid �lm may open the possibility of
using suh �lms for �eld emission eletron soure [84, 85, 86, 87℄. Carbon nitrides have
also been tested for the development of ossointegrated joint arthroplastie. The major
problem with these implants is the wear debris generation whih might provokes serious
tissue reations. Amorphous CNx samples have been reently identi�ed as an interesting
oating for human implants [88℄. Beause of these great expetations they have rapidly
beome the fous of an enormous attention and nowadays they are widely investigated
both experimentally and theoretially as potential andidates for new ultra-hard ma-
terials [89℄. The starting interest on arbon nitrides dates bak to the Liu et Cohen's
theoretial work of 1989 [12℄ where the properties of the �-C3N4 phase were proposed
to be similar or even superior to those of diamond. From this �nding many researhers
were positively stimulated to �nd an adequate way to synthesise pure rystalline C3N4

materials. The �rst attempt to make arbon nitride �lms refers to J. J. Cuomo et al. in
1979 [90℄, who grew parayanogen-like thin �lms with N/C ratios equal to one. Muh
more reently, a wide variety of tehniques suh as ion implantation [91℄, rf sputtering
of arbon targets in a nitrogen atmosphere [92℄, plasma deposition of various hydroar-
bons [93℄, nitrogen ion implantation with simultaneous arbon vapour deposition [94℄, d
magnetron sputtering of a graphite target in a nitrogen ambient [95℄, shok wave om-
pression of arbon nitride preursor [96℄, plasma-enhaned hemial vapour deposition

40
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[97℄, ion-assisted dynami mixing [98℄ and laser ablation of a arbon target in a stream of
atomi nitrogen [99℄, have been investigated. From these attempts we know that many
ompositions of arbon nitrides exist and more than a few are stable to at least 800 ÆC.
Beside this, the experimental evidene also seems to point out to the possible existene
of di�erent phases with a very similar stability: mixed-phase deposits are quite often
obtained. As a matter of fat, despite many e�orts, the synthesis of arbon nitride �lms
with stoihiometry C3N4 (57.14 % of nitrogen onentration) is still restrited to the
prodution of amorphous samples with unlear rystallographi data. It is beause of
the above problem that in the �rst part of this Chapter (Setion 8.2, p. 42) it has been
shown a ross-heking on the relative stability and hardness of di�erent hypothetial
C3N4 phases by using various DFT solid state alulational methods. This was also the
�rst oasion to probe and test our odes in treating the eletroni properties of a novel
lass of arbon-based hard materials.

Another ruial problem found during the synthesis of arbon nitrides is that of
nitrogen onentration. From the deposition of CNx �lms, with 0 � x � 0:35, by reative
magnetron sputtering1 in Ar/N2 disharges we know, for example, that the maximum
nitrogen onentration obtainable in the �lm is strongly dependent on the formation of
stable moleules, like N2 and C2N2, that an with high probability desorb and leave
the growth surfae at even low substrate temperatures [100, 101, 102℄. Moreover, the
possible transition at � 200 ÆC from a \graphiti-like" ! \fulleren-like" phase, reently
presented by N. Hellgren et al. [100℄, ould be imagined to take plae from a nitrogen-poor
CNx graphiti form. In fat, this transition is observed when the nitrogen onentration
inreases from 5 to 15 % and the fulleren-like struture is found to be stable when the
nitrogen amount is between 10 and 25 %. These onentrations are muh loser to the
C11N4 stoihiometry than the well-known C3N4. Furthermore, the arbon-nitrogen ratio
in CNx �lms (0:2 � x � 0:35) observed by H. Sj�ostrom et al. [103℄ for bukled turbostati
mirostrutures formed at high temperatures is again lose to the omposition of the
C11N4. Suh arbon-nitrogen systems have been found to be both hard and elasti from
nanoindentation experiments [103, 100℄.

Therefore, from the above evidenes it beomes of primarily importane to under-
stand, at least theoretially, whether or not the C11N4 stoihiometry ould be in om-
petition or even favoured over the formation of the C3N4. It is also interesting to hek
what would be the hanging in the mehanial and eletroni properties if a pure rys-
talline arbon nitride sample would be synthesised in the C11N4 omposition. This has
been investigated in the seond part of the present Chapter (Setion 8.3, p. 72). In par-
tiular, it has been stressed the importane of the use of theoretial methods and models
to obtain further haraterisation and trends in the bonding on�gurations of the CNx

1This tehnique implies the evaporation of arbon (arbon atoms) and the interation with a plasma

made of ionised nitrogen atoms. Permanent magnets behind the sputtering target are used to on�ne

most of the eletrons in the region of the target surfae.
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strutures. The attention is mostly foalised on the study of the stability and the hard-
ness of two di�erent stoihiometries: C3N4 and C11N4. It should also be noted that the
analysed systems are isoeletroni to eah other and to diamond, although the nitrogen
onentration on the latter phase (26.67 %) is muh lower than in the former one (57.14
%). In other words, the investigation is here restrited only to those ompounds that are
eletronially analogue2 to arbon [104, 105, 106℄. This partiular hoie derives from the
fat that all the substanes satisfying this rule should likely show the same interesting
properties of the hardest known materials (e.g. ubi boron nitride and diamond).

8.2 Study of the C3N4 stoihiometry

By using an empirial formula (see Eq. 2.5 in p. 6) whih relates the bulk modulus
of tetrahedrally oordinated systems to the length and ioniity of their bonds, it was
predited as early as in 1985 that a material made of arbon and nitrogen should exhibit
a bulk modulus higher than diamond [23℄. This possibility was addressed to the short
length and the high ovaleny of the C-N bond. As a onsequene arbon nitrides have
been proposed as andidates for new ultra-hard materials. However, despite this great
expetation the synthesis of C3N4 is nowadays still restrited to the prodution of small
amounts of samples, whih are not suÆient enough for a orret strutural haraterisa-
tion. This restrition is possibly due to the tehnologial diÆulties to produe materials
with large amounts of nitrogen that is required to hemially interat with arbon [100℄.
Experimentalists have observed arbon nitride materials in amorphous or disordered
phases [107, 108, 109℄ as well as rystalline aggregates dispersed in an amorphous matrix
[110, 111℄. Theoretial investigations on the subjet have also been made to explain the
stability and mehanial properties of the synthesised samples and to predit the prop-
erties of some of the new hypothetial forms [22, 29, 112, 113, 114, 115, 116, 117, 118℄.
Reently, �rst priniples alulations, within the loal density approximation, on the u-
bi form of C3N4 have shown a bulk modulus exeeding that of diamond [29, 117, 119℄.
Suh an important �nding has in part on�rmed the original intuition of M. L. Cohen
about the possibility for a three-dimensional CNx ompound to be ultra-hard. A om-
plete theoretial desription of the hardness and the stability of various hypothetial
C3N4 phases is reported in the following Setions.

8.2.1 Methods and omputational details

The main goal of this work is to employ a fast and reasonably aurate alulational
sheme in order to desribe the eletroni struture properties of arbon nitrides. For
this purpose the output of the usually very aurate full potential approah has been

2The same four averaged number of valene eletrons per atom is kept.
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ompared with those from methods based on the spherial shape approximation of the
rystal potential. The entire set of results have also been orrelated with the early PP
alulations. In this Setion the attention is �nalised on the simple C3N4 stoihiometry
and as a starting point the relative energy stabilities and hardness of �ve hypotheti-
al C3N4 model phases, namely graphiti-like, �, �, ubi and pseudo-ubi, have been
heked. Three di�erent DFT based methods within the LDA have been tested: Aug-

mented Spherial Wave [74, 120℄, Linear MuÆn-tin Orbitals [76, 121℄ and Full-potential

Linearized Augmented Plane-Wave [68℄. For the exhange and orrelation e�ets the pa-
rameterisation sheme of Van Barth, Hedin [122℄ and Janak [123℄ was used in the ASW
and LMTO methods, while in the FP-LAPW the Perdew and Wang 92 [47℄ funtional
was assumed.

For the C3N4 system total energies were evaluated within the LMTO and ASW
alulations using the tetrahedron method for the k-spae integration and a uniform
12�12�12 mesh aording to the Monkhorst-Pak [63℄ sheme (energy onverging with
k-points, �E < 1 mRy). In both methods the atomi sphere approximation is used,
in whih eah atom is represented by a sphere. Inside the spheres the potential and
harge density are assumed to be spherially symmetri. Then the sum of all sphere
volumes is made to equal the volume of the unit ell. Within the ASA one usually has to
introdue pseudo-atoms (with atomi number Z=0) or empty spheres in order to ensure
a ontinuous eletroni density in open strutures. In the present alulations we paid
partiular attention to an optimal hoie of the atomi radii as well as the number and
position of empty spheres used to meet the ASA riteria. For the diamond and -BN a
12�12�12 mesh was found to ensure the desired onvergene.

The full potential total energy alulations of the C3N4 phases were performed using
the same plane wave ut-o� (87 plane waves/atom) and k-point number (300 total k-
points), as they were optimised for the �-C3N4 struture, a phase with the largest number
of atoms per unit ell (i.e. 28). For arbon and nitrogen atom types the same muÆn-tin
radius (Rmt=1.33 �A) was used and maintained �xed for all the investigated strutures.
By using di�erent basis set ut-o�s it has also been found that at the equilibrium volume
approximately 87 plane-wave per atom were suÆient enough to predit the bulk modulus
of arbon nitride without any signi�ant hange when inreasing the number of basis
funtions used. For the -BN system the FP-LAPW alulations were performed by
employing the same parameter as Park, Terakura and Hamada [124℄.

8.2.2 Strutural models for the C3N4 stoihiometry

The rystal geometries of the C3N4 phases were taken from the theoretial work of D.
M. Teter et al. [29℄, in whih the equilibrium strutures were determined with a pseudo-
potential plane wave approah [55℄. The hexagonal beta phase (�-C3N4) ontains 14
atoms/unit ell (P3 spae group) and onsists of fourfold o-ordinated arbon and three
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fold o-ordinated nitrogen atoms (Fig. 8.1)3. This phase is a network of three-, four-
and six-fold rings of tetrahedra. The alpha phase (�-C3N4) has hexagonal symmetry
and ontains 28-atoms/unit ell (P31 spae group). It an be viewed as a sequene
of A and B layers in an ABAB staking in whih A is the �-C3N4 unit ell and B
the mirror image of A. The ubi struture (ubi-C3N4) is based on the high-pressure
willemite-II struture of Zn2SiO4, where C substitutes Zn and Si and N substitutes
O. This phase ontains 28-atoms/unit ell and belongs to the spae group I43m. The
pseudo-ubi struture, usually alled defet-zin blende struture (bl-C3N4), exhibits
P42m symmetry and ontains 7-atoms/unit ell. The graphiti form of C3N4 (graphiti-
C3N4) is represented by a planar struture with an ABA [29℄ staking mode (Fig. 8.2).
The hexagonal unit ell ontains 14 atoms and the symmetry is P6m2. Eah C atom is
three-fold oordinated, as is one of the four N atoms per ell. The other three N atoms are
two-fold oordinated (resonant bonds). This phase has been taken as a referene for the
graphite-based struture in making omparison between the relative stabilities of di�erent
arbon nitride phases. For the graphiti-like phase four other forms are predited in the
earlier works. The �rst one (AAA staking mode [115℄) has 7 atoms�unit ell�1 and a
spae group P6m2. The seond phase (ABC staking mode [114℄) whih belongs to the
R3m spae group, shows 7 atoms in the unit ell and onsists of graphite-like sheets with
ABC rhombohedral staking order. The other two phases were reently suggested by I.
Alves et al. [125, 126℄. These authors laim to have sueeded in the preparation of a
arbon nitride powder with C3N4 omposition by using high pressure synthesis methods.
From the analysis of the X-ray di�ration patterns a rystal struture (P2mm spae
group) with an orthorhombi unit ell has been presented (Fig. 8.3). Both types of AAA
and ABA staking modes have been suggested. For these model phases a very di�erent
vaany ordering has been displayed inside eah of the graphiti planes with respet to
the hexagonal system introdued by D. M. Teter and R. J. Hemley (P6m2).

8.2.3 Relative stability of variuos C3N4 phases

For the investigated systems the full potential method predits the same energy trend as
found by D. M. Teter et al. [22℄ in their pseudo-potential plane-wave alulations (see
Fig. 8.4 and Tab. 8.1). While the graphiti-like phase with ABA staking sequene is
the most stable from, the � system lies only marginally higher in energy by 0.036 eV.
The energy of the � phase has been found to be 0.615 eV above that of the � struture.
Even though the alulated energy di�erene between graphiti and the � phases is of
the same order of magnitude as that alulated with PP method, i.e. 0.041 eV, the
energy di�erene between � and � has been estimated to be 0.615 eV instead of 0.266

3In Fig. 8.1 we show the struture of the �-C3N4 phase as representative for a three-dimensional CNx

system. For the other strutures, the reader should refer to the original work of D. M. Teter and R. J.

Hemley in Ref. [29℄.
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Figure 8.1: �-C3N4 model system. Carbon and Nitrogen are depited in grey and white,
respetively. This olor sheme is kept throughout all the Thesis.

Figure 8.2: One layer of the hexagonal graphiti-C3N4 model.



46 Chapter 8: Carbon Nitrides

Figure 8.3: One layer of the orthorhombi graphiti-C3N4 phase.

Figure 8.4: Relative stability between di�erent C3N4 phases by using di�erent method
of alulations.
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graphiti- �- �- ubi- bl-

FP-LAPW 0 0.036 0.651 2.065 2.238
PP 0 0.041 0.307 1.322 1.485

� (g/m3) 2.33 3.77 3.57 3.89 3.86

Table 8.1: Total energies and densities for di�erent C3N4 phases. Energy values are
expressed in eV/C3N4 unit and are saled with respet to the stable graphiti-C3N4

form. Pseudo-potential alulations refer to the work of D. M. Teter and R. J. Hemley
[29℄.

eV. Finally, the ubi and pseudo-ubi struture (simple ubi and defet-zin blende
phases) are estimated to have the highest total energies. The simple ubi phase lies at
1.414 eV above the � phase, while the defet-zin blende lies at 1.587 eV higher. The
energy di�erene found for � $ ubi is 1.414 eV instead of 1.015 eV as alulated with
the pseudo-potential approah. In the same way the � $ pseudo-ubi energy di�erene
is estimated to be 1.587 eV in plae of 1.178 eV. The use of Y. Liu et R. M. Wentzovith
geometries [114℄ for �-C3N4 and bl-C3N4 gives rise to only small di�erenes in the values
of the total energies, on�rming thus the PP energy trend. In partiular, the � phase now
lies slightly higher in energy (+0.0215 eV) and the pseudo-ubi slightly lower (-0.038
eV) with respet to the previous alulation (D. M. Teter's geometries).

By ontrast, the LMTO and ASW methods predit lower energies for ubi strutures
and a higher one for the graphite-like phase. The obtained energy trend follows exatly
the atomi densities, indiating that in less ompat strutures (i.e. graphite-like phases)
the ASA approximation is no longer aeptable. As a matter of fat, the layered phase
is the least dense (�= 2.33 g/m3) and it lies at high energy, while the ubi phase is
the most dense (�= 3.89 g/m3) and onsequently is predited to have the lowest energy.
Hene, the relative stability trends observed with LMTO and ASW are not omparable
with those dedued from FP-LAPW and PP. This is due to the diÆulty of getting
reliable results from the use of empty spheres in desribing phases with very di�erent
atomi paking. In fat, in the graphiti phase a large amount of empty spae must be
�lled in the unit ell whereas the reverse situation is true for the ubi strutures where
the ASA worked best. However, even if it is not possible to make a strit omparison
between the alulated relative stabilities, it is important to note that all the tested
DFT methods are in agreement in prediting equilibrium volumes, bulk moduli and their
pressure derivatives [117℄. Details are given in Setion 8.2.4 for the whole set of analysed
C3N4 phases.
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Thermodynami stability of the C3N4 stoihiometry

When onsidering the possibility to synthesise arbon nitrides, one has to aount for
their thermodynami stability with respet to the starting materials. The formation
reation of a C3N4 ompound is given below.

3C() + 2N2(g) ! C3N4() (8.1)

For simpliity it has been onsidered here the reation between diamond, whih is slightly
less stable than graphite4 (�Gf=2.9 kJ/mol), and nitrogen to form arbon nitrides. An
important thing that has to be noted in Eq. 8.1 is that both diamond and moleular
nitrogen possess strong bonds (C-C � 350 kJ/mol and N-N � 956 kJ/mol) while the
reation produt (C3N4) ontains only weaker C-N bonds (260-320 kJ/mol)5. It is thus
quite evident that arbon nitrides are likely to be thermodynamially unstable under
atmospheri pressure. Nonetheless, if a syntheti proess an produe C3N4 a rather
large ativation energy would be needed to break the C-N bonds. Carbon nitrides ould
be thus result metastable at ambient onditions.

In order to get a quantitative insight into the stability of arbon nitrides with re-
spet to deomposition to the elements, aurate values of their ohesive energies, Eoh:

6,
are needed. Then, by knowing the experimental or theoretial values for the energy
required to dissoiate the nitrogen moleule and the ohesive energy of diamond, the en-
thalpy hange for the reation 8.1 an be evaluated. It is well known that the DFT-LDA
approah normally tends to overestimate the ohesive energies for strutures made of
elements of the seond row of the periodi table suh as arbon and nitrogen [127, 128℄.
The ohesive energy of diamond is in fat signi�antly overestimated by � 150 kJ/mol
(see Tab. 8.2 and Ref. [67℄) with respet to the experimental value [129℄. Nonetheless,
the general tendeny of the LDA to overestimate the strength of C-C bond an be re-
dued by using the generalized gradient orretions [47℄, though the predition of some
of the strutural properties, suh as the interlayer distane in graphite, are sometimes
worse than in LDA [67℄. The omputed ohesive energies (with the aurate FP-LAPW
method) are shown in Tab. 8.2 as a funtion of di�erent exhange-orrelation potentials:
LDA [130℄, Perdew-Burke-Ernzerhof (PBE) [131℄ and Perdew-Wang 91 (PW91) [47℄.
Calulations suggest that in spite of the general improving of the results obtained with
GGA funtionals, the availability of very aurate ohesive energies an only be overome
with the use of Quantum Monte Carlo (QMC) method. However, at the moment QMC
energy values have not yet been published for arbon nitrides.

4Graphite is the most stable form of arbon, so that formally we should have taken it as reatant

instead of diamond.
5Bonds between elements from the seond row of the periodi table in whih one of the atoms ontain

lone pairs are usually weaker.
6Energy required to break apart a struture into isolated atoms.
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The investigated C3N4 phases
Eoh: N2 graphite diamond graphiti- �- �- ubi- bl-

LDA -11.35 -8.93 -8.93 -6.89 -6.88 -6.80 -6.60 -6.57
-11.34� -8.87y

PBE -10.28 -7.99 -7.85 -6.04 -6.03 -5.93 -5.73 -5.68
-7.72y

PW91 -10.27 -7.98 -7.84 -6.03 -6.02 -5.92 -5.72 -5.68
-7.72y

exp. -9.91x -7.37z -7.37z

Values as ompiled in Ref. (x)=[132℄, (z)=[133℄, (�)=[134℄ and (y)=[135℄.

Table 8.2: Cohesive energies (eV/atom) of di�erent C3N4 model systems. Values are
onfronted with those of the starting materials: diamond/graphite and N2. For the
alulations of the nitrogen dimer it has been used a simple ubi ell (a=10 �A) with
atoms displaed along the diagonal diretion. It should be noted that an overbinding
of more than 1 eV/atom is not unusual in loal-density alulations for seond-period
elemental solids, as for example diamond [136, 137℄.

An elegant way to get out from the problem of having preise ohesive energies was
given in 1997 by J. V. Badding [138℄. He proposed a simple hemial approah to the
thermodynami stability of C3N4 starting from the use of bond enthalpies derived from
moleular system. Covalently bonded systems suh as diamond and arbon nitrides an
be though as \giant moleules", so that simple bond enthalpy tehniques an be used
to estimate their stability. If we imagine, for example, to remove one arbon atom
from the diamond struture, whih is haraterised by arbon tetrahedral bonds, four
C-C onnetions will be broken. Suh proess will leave four arbon atoms with one
dangling bond, whih is equivalent to the removal of a seond arbon. The whole ost of
removing two C atoms amounts to the breakage of four C-C single bonds, whih have in
a moleular system a bond energy of about 350 kJ/mol. The ohesive energy of diamond
an be thus estimated to be 350�2=700 kJ/mol, whih is in good agreement with the
experimental value of 711 kJ/mol [133℄. In this approah it has been assumed that the
ontributions of the hemial bonds to the ohesive energy are additives. This hypothesis
has been examined in details for solid state strutures by D. A. Johnson [139℄. For three-
dimensional (sp3 network) arbon nitrides the removal of one nitrogen atom has as a
onsequene the breakage of three C-N bonds. This will leave three arbon atoms eah
with one dangling bond, whih is equivalent to the removal of 3

4
of a arbon. Hene,

the breaking of three bonds amounts to removal of a fragment with C3=4N stoihiometry.
Using the tabulated bond energies for C-N (286-305 kJ/mol [139, 140℄), the ohesive
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energy for arbon nitrides should be in the range 858-915 kJ/mol of C3=4N fragment (or

490-522 kJ per mole of atoms, i.e 490=4
7
�858). The enthalpy for the formation reation,

�Ho
f , as in Eq. 8.2 an be thus alulated by knowing the experimental values of the

energy required to dissoiate a nitrogen moleule (956 kJ/mol [132℄) and the ohesive
energy of diamond (711 kJ/mol).

3

4
C() +

1

2
N2(g) ! C 3

4
N() (8.2)

�Ho
f =

3

4
(711 kJ=mol) +

1

2
(956 kJ=mol)�Eoh:(C 3

4
N) (8.3)

The �Ho
f ranges from 96 to 153 kJ/mol of C 3

4
N (or 384-612 kJ/mol of C3N4), depending

on the hoie of C-N bond enthalpy. Using the ohesive energies as alulated in Tab.
8.27 we obtain the standard molar enthalpy hange of formation at 0 K (�Ho

f;0) listed

in Tab. 8.3. Values were onverted in kJ/mol (1 eV= 10�19 J) and the ohesive energy
per C 3

4
N fragment, Eoh:(C 3

4
N), was obtained using the relation Eoh:(C 3

4
N) = 7

4
�

Eoh:(C3N4), where the term Eoh:(C3N4) represents the omputed energy per mole of
atoms of Tab. 8.2. The estimated �Ho

f;0 for the Eq. 8.3 are all positive and their

funtional �Ho
f;0 (graphiti-C 3

4
N) �Ho

f;0 (bl-C 3
4
N)

LDA 30.3 84.4
PBE 44.1 104.9
PW91 44.6 103.7

Table 8.3: Calulated enthalpy of formation, �Ho
f;0 (kJ/mol), for di�erent exhange-

orrelation funtionals. The above table shows only values representatives for the layered
graphiti-C 3

4
N and the three-dimensional bl-C 3

4
N. The omplete list of enthalpies is given

in Tab. 8.18 of Setion 8.3, p. 72.

magnitudes agree quite well with the enthalpies of formation obtained with the Badding's
method. This is espeially true for the hard and three-dimensional phases, suh as bl-
C3N4, for whih the above hemial approah has been hypothesised. However, sine
the GGA funtionals (PBE and PW91) have shown a better desription of the ohesive
energies of the end members it is thus likely that the �Ho

f;0 for the formation of graphiti-
C3N4 and bl-C3N4 lays at about 177 and 417 kJ/mol, respetively. This large and positive

7These values have been obtained by taking the di�erene between the total energy of the solids

and the ground-state energies of the non spin-polarised atoms. No orretion for zero-point motion has

been made. All the ohesive energies listed in this Thesis have been omputed with the aforementioned

proedure.
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enthalpy of formation will be thus the most predominant ontribution to the free energy
of formation. However, this instability should not be very large to prelude the synthesis
of CNx ompounds. As matter of fat, metastable arbon-based moleules with large
and positive (endothermi) enthalpies of formation suh as aetylene (226 kJ/mol) are
known [139℄. Using the shifts in the free energy desribed from the integration of the
equations of state (Eq. 8.4),

�Gp =

pZ
0

V dp (8.4)

J. V. Badding [138℄ determined the pressures to form thermodynamially stable C3N4

ompounds to be of the order of 50-150 GPa. Despite these very large values, suh
pressures are nowadays attainable with urrent tehnologies. Carbon nitrides ould be
thus synthesised in high pressure and high temperatures onditions.

8.2.4 Hardness

Isotropi ompression

The main purpose is here the investigation of the hardness of arbon nitrides with di�er-
ent DFT methods by evaluating the ompressibility of the system. The resistane upon
the volume hange have also been investigated for diamond and ubi boron nitride in
order to allow a ross-heking between the theoretial and experimental results. Cal-
ulations were performed by using the three previously mentioned DFT-based methods
to evaluate the total energy as a funtion of di�erent unit ell volumes. That is, the
total energy has been omputed after the appliation of an isotropi ompression to the
unit ell (by means of keeping onstant the /a ratio). The data sets E(Vi) were then
�tted with a third order Birh equation (Eq. 3.2 of Chapter 3, p. 9) to determine the
equilibrium volumes, bulk moduli and pressure derivatives. As shown in Tab. 8.4, all the

Lattie onstants (aeq=eq) �- �- ubi- bl-

LMTO 12.274/8.936 12.100/4.538 10.302 6.562
ASW 12.225/8.904 12.117/4.545 10.368 6.492

FP-LAPW 12.211/8.894 12.102/4.539 10.201 6.484
PP 12.220/8.900 12.114/4.543 10.199 6.469

Table 8.4: Equilibrium lattie onstants (ao) for the investigated model systems. The
energy vs. volume data were �tted with a third order Birh equation.

DFT methods employed for the predition of the equilibrium lattie onstants and hene
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Bulk modulus �- �- ubi- bl- diamond

LMTO 438 (3.6) 455 (3.9) 468 (4.0) 441 (4.0) 453 (3.7)
ASW 414 (3.6) 431 (3.6) 452 (4.0) 427 (3.9) 440 (3.8)

FP-LAPW 431 (3.3) 460 (3.3) 518 (4.7) 445 (3.6) 466 (3.6)
PP 425 (3.1) 451 (3.3) 496 (3.4) 448 (3.4) 464 (3.7)

Table 8.5: Bulk modulus, B (GPa) and its pressure derivatives, B
0

(values in parenthesis)
for various C3N4 phases and diamond.

volumes, give values that are in good agreements with the early pseudo-potential alu-
lations [29℄. The FP-LAPW method usually tends to estimate shorter a and  lengths,
though they are often very similar to those omputed with the pseudo-potential approah.
The alulated ompressibility of various arbon nitrides with omposition C3N4 is listed
in Tab. 8.5. Due to the short lengths found within the FP-LAPW method, the predited
bulk modulus is usually higher than what is expeted. This is partiularly true for the
ubi-C3N4 phase for whih a very large B (518 GPa) has been obtained (see Fig. 8.5).
This value is even larger than that alulated for diamond. Employing a basis set of
the same size, FP-LAPW alulations yield for diamond a bulk modulus of 466 GPa
(B

0

=3.60 and aeq=6.679 ao) to be ompared with an experimental value of 442 GPa.
While the predited bulk moduli of the other hypothetial materials (�-C3N4, �-C3N4,
and bl-C3N4) approah that of diamond (� 430-460 GPa), the ubi-C3N4 learly exeeds
it. The ubi phase is estimated to be harder than diamond also from ASW (diamond:
B=440 GPa; ubi-C3N4: B=452 GPa) and LMTO (diamond: B=453 GPa; ubi-C3N4:
B=468 GPa) alulations. It is worth to note that all the DFT methods predit the ubi
phase to be hardest arbon nitride, with a bulk modulus larger than diamond, while the
alpha struture is omputed to have the lowest B (highest ompressibility for a three-
dimensional C-N network)8. For the -BN system the bulk moduli are of the same order
of magnitude (BLMTO=352 GPa, BASW=345 GPa and BFP�LAPW=356 GPa) and lose to
the values given in the early theoretial works [142, 124, 143, 144℄. However, it should be
mentioned that all the three methods ompute bulk moduli that are at about 100 GPa
below the experimental value (456 GPa [145, 146℄). Sine the reverse tendeny (B gener-
ally overestimated with respet to the experimental bulk modulus) is found for diamond,
it is only possible to onlude that the hardness of the hypothetial ubi-C3N4 should
be at least, if properly synthesised, of the same order of magnitude as that of diamond.
The alulated pressure derivatives of the bulk modulus (B

0

) for the C3N4 systems lies

8The layered graphiti-C3N4 is in absolute the phase with the highest ompressibility with a bulk

modulus ranging between 198-253 GPa (fr. Ref. [141℄). This is due to the graphiti-like form whih is

generally soft upon ompression in the diretion perpendiular to the sheets.
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Figure 8.5: Energy dependene of the unit ell volume for ubi-C3N4 as a funtion of
three di�erent alulational methods. Data point have been �tted with the Birh type
EOS.

between 3 and 4 as shown in Tab. 8.5. The FP-LAPW alulation usually gives a better
agreement with the PP results exept in the ase of the ubi phase for whih a larger
value has been extrapolated.

Resistane to reversible deformation upon shape hange

Sine materials deform plastially only when subjeted to shear stress, it beomes impor-
tant to apply external strains to the rystal to estimate its resistane against deformation.
The strength of an ideal rystalline material is proportional to its elasti shear modulus
[147, 148℄, while for a real solid, the strength is determined by lattie defets (disloations
and or point defets) and it is usually smaller than an ideal system. However, the shear
stress needed for disloation motion (Peierls stress) and thus for plasti deformation is
also proportional to the elasti shear modulus of the deformed material. It was in 1998
when Teter argued that in many hardness tests one measures plasti deformation whih
is diretly onneted to the deformation of a shear harater [22℄. In partiular he om-
pared the Vikers hardness data to the bulk and shear moduli from many hard solids and
found that the shear modulus of polyrystalline materials is a better hardness preditor
than the bulk modulus (Fig. 8.6). Experimental bulk moduli an be obtained from the
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Figure 8.6: Figure from R. Riedel [149℄ showing the sattering of the Vikers hardness
for hard materials when ompared with bulk and shear moduli.

measurements of the volumes as a funtion of the pressure [113℄, while the single rystal
elasti moduli an be estimated with Brillouin spetrosopy, inelasti neutron sattering,
ultrasoni tehniques or Shaefer-Bergmann method [150℄. One we know the omplete
set of the single rystal moduli, it is possible to derive the values of B and G of a poly-
rystalline material [151℄. As shown in Tab. 8.6 the alulated elasti moduli give the
possibility to express the hardness in form of isotropi shear modulus. As one may notie
the hardness trend has been ompletely hanged with respet to the one desribed in
Tab. 8.5. The highest G value has been omputed for the bl-C3N4 whereas the other
model systems show an isotropi shear moduli in between 300 and 326 GPa. The two-
dimensional phase (graphiti-C3N4) exhibits the lowest hardness with a shear modulus
of 188 GPa. The major di�erene between the alulated bulk and shear moduli resides
mostly in the fat that while, the B values are generally approahing or even exeeding
that of diamond, the alulated G are at least 120 GPa lower. Therefore, it is very likely
that diamond will remain the hardest known material with high elasti onstants and the
largest shear modulus [29℄, though various hypothetial C3N4 phases have shown very
interesting properties. As a matter of fat, the value of G for the bl-C3N4 has been al-
ulated to be quite lose to that of -BN (409 �6 GPa [22℄), whih is the seond hardest
known material.

The dependene of the elasti onstants on the various di�erent exhange-orrelation
hoies is shown in Tabs. 8.7 and 8.8 for the US-PP method. As expeted the LDA
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�- [152℄ �- [114℄ ubi- [29℄ bl- [114℄ graphiti- [114℄ diamond [153℄

11 576 834 863 840 870 1117 (1080)
33 700 1120 - - 57 -
44 279 305 348 452 14 604 (557)
12 -31 279 313 213 148 137 (137)
13 -17 138 - - -3 -
14 - - - - - -
15 -20 - - - - -
66 304 - - - -
46 20 - - - - -
G 300 326 319 397 188 559 (523, 535 [22℄)
� 3.77 3.57 3.89 3.79 2.56 3.52

Table 8.6: Calulated elasti onstants (ij in GPa), atomi densities (� in g/m3) and
isotropi shear moduli (G in GPa) for �ve di�erent C3N4 phases. Values in parenthesis
refer to experimental measurements [8℄.

predits larger bulk moduli ompared to the tested GGA funtionals. In partiular, the
best agreement with the experimental diamond bulk modulus has been obtained by using
the PW91 and PB methods. However, in the ase of diamond the set of ij alulated
within the loal density approximation agree reasonably well with the experimental elasti
onstants and in partiular with values obtained from PW91 and PB alulations. It is
also important to note that the LDA provides a very good desription of the 12 modulus
ompared to the others tested GGA funtionals. This on�rm the general tendeny of
LDA to work well for sti�er materials. The estimated isotropi shear moduli result very
similar to eah other with G values on�ned within a di�erene of 16 GPa. For diamond,
the ion relaxation does not bring any signi�ant improving to the desription of the elasti
onstants (fr. values of the LDAfrozen and LDArelaxed in Tab. 8.7). On the other hands,
in the ase of the hard bl-C3N4 the relaxation of the internal degrees of freedom results
ruial for both bulk and elasti moduli. Generally, the relaxation of the internal atomi
positions beomes neessary for those ases where the applied strain indues a signi�ant
redution of the symmetry or when the atomi positions are not ompletely �xed by the
spae group symmetry.

8.2.5 Hexagonal and Orthorhombi graphiti-C3N4

The graphiti C3N4 struture has been onsidered as one of the possible forms for the
arbon nitrides [115, 29, 154℄. It is ertain that suh a model system is not likely to
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diamond exp. LDAfrozen LDArelaxed PW91 PB PW86 LM

B 443 463.7 463.1 449.6 444.9 429.6 463.1
11 1080 1116.6 1111.3 1112.8 1110.2 1106.5 1158.9
12 137 137.2 138.9 118.0 112.2 91.1 115.2
44 557 604.3 603.5 606.0 604.7 612.9 611.0
G 523 559 557 563 562 571 575

Table 8.7: Calulated elasti onstants (GPa) and bulk moduli (GPa) for diamond as
a funtion of di�erent exhange-orrelation methods: Perdew-Wang 91 (PW91) [47℄,
Perdew-Beke (PB) [46℄, Perdew-Wang 86 (PW86) [57℄, Langreth-Mehl-Hu (LM) [45℄.
The subsript \relaxed" and \frozen" denotes values alulated with or without the re-
laxation of the atomi positions.

bl-C3N4 LDAfrozen LDArelaxed Ref.[114℄ PW91 PB PW86 LM

B 445.4 425.9 425 400.1 396.2 376.6 423.7
11 902.3 842.9 840 869.9 866.8 856.9 880.1
12 217.0 217.4 213 165.2 160.8 136.4 195.5
44 518.3 454.6 452 514.7 514.3 518.8 519.4
G 448 398 397 450 450 455 449

Table 8.8: Calulated elasti onstants (GPa) and bulk moduli (GPa) for bl-C3N4 as a
funtion of di�erent exhange-orrelation funtionals.

show low ompressibility due to the presene of weak inter-layer bonding. Nonetheless,
its major interests arise from the possibility to represent a low energy model struture.
In order to obtain the graphiti form of C3N4 two arbon atoms must be replaed with
a single nitrogen in graphite with a onsequent reation of a arbon vaany. In the �rst
model introdued by D. M. Teter and R. J. Hemley the vaanies are ordered in suh
a way that a hexagonal unit ell is found (Fig. 8.7). For this system di�erent staking
ordering types were proposed leading to hexagonal [115, 29℄ or rhombohedral latties
[114, 115℄. All these phases are based on the same order of the vaanies. However,
very reently, I. Alves et al. [125℄ have introdued a new order of the arbon vaanies
whih leads to an orthorhombi unit ell (Fig. 8.8). This phase has been proposed after
having analysed the X-ray data relative to samples obtained from the polyondensation
of Melamine (Eq. 8.5) at 3 GPa and 800 ÆC.

C3N6H6 ! C3N4 + 2NH3 (8.5)

For suh a model system a di�erent bonding onjugation is expeted due to the par-
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Figure 8.7: Eletron irulation in the hexagonal graphiti-C3N4 model.

Figure 8.8: Eletron irulation in the orthorhombi graphiti-C3N4 model.
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tiipation of the nitrogen N1 to the �-deloalisation along the b-axis (see Fig. 8.8). In
partiular, the double oordination of the N1 atom allows the onnetion between the
double bonds resonane loated in the adjaent C3N3 rings, o�ering thus the possibil-
ity to show an eletron deloalisation along the graphiti layer. On the ontrary, the
hexagonal phase shows a three oordinated N1 atom whih hinders the expansion of the
eletron deloalisation along the graphiti plane. In short, the hexagonal lattie possess a
loalised eletroni resonane on�ned in eah of the C3N3 rings while, the orthorhombi
phase guarantee an extended eletron deloalisation along the b-axis.

The purpose of this Setion is to examine the stability and the eletroni properties of
the orthorhombi lattie with respet to the hexagonal one. The study is here �nalised
to the searh of new stable layered model systems for arbon nitrides. In partiular,
the possibility of looking at the orthorhombi phase as a novel model for the C3N4 sto-
ihiometry, has been aurately onsidered and theoretially justi�ed in the following
subsetions. By using the pseudo-potential and the FP-LAPW LDA methods, the di�er-
enes in the stability and in the eletroni properties have been highlighted between the
two latties. For simpliity, the AAA staking mode has been used for both lattie types.
Further, the ASW method has been onsidered to desribe the hybridisation inuene on
the hemial bonding inside the graphiti layer: the Crystal Orbital Overlap Population
(COOP) analysis is presented.

Computational details

The alulations were arried out in the same framework of the DFT with the VASP plane
wave pseudo-potential pakage [58℄. The interations between the ions and the eletrons
are desribed by using ultra-soft Vanderbilt pseudo-potential [61℄. The parameterisation
sheme used for the LDA is the Ceperley-Alder exhange-orrelation potential [56℄. A
omplete ions and volume relaxation was performed for the orthorhombi phase by using
the onjugate-gradient algorithm [155℄ and an energy ut-o� of 25.57 Ry for the plane
wave basis set. The Methfessel-Paxton smearing sheme [156℄ was used for geometry
relaxation while the tetrahedron method with Bl�ohl orretions [62℄ was implied for the
total energy alulations. All the energies were onverged with a k-point sampling using
a 10�10�10 Monkhorst-Pak grid [63℄. Aurates total energy alulations and eletron
density maps were also performed on the optimised strutures by using the FP-LAPW
method (WIEN97 pakage [68℄). The number of plane waves per atom used was 172 and
a total of 100 k-points were implied, with a 4�4�4 sampling. For arbon and nitrogen
atom types the same muÆn-tin radius was used (Rmt=1.33 �A).

A qualitative stabilisation feature was also assessed using the hemial bonding ri-
teria. The COOP were evaluated for the two graphiti-like C3N4 systems by using the
ASW-LDA method [120, 74℄. Calulations were performed by applying the tetrahedron
method for the k-spae integration and 217 irreduible k-points generated from a uni-
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form 12�12�12 mesh aording to the Monkhorst-Pak sheme. It has to be noted that
the energy onvergene riterion of �E=10�8 Ry is in the ASW more preise than in
FP-LAPW (�E=10�5 Ry) beause of the faster method in use.

Geometry optimisation

The geometry of the orthorhombi phase was taken from the original work of I. Alves and
for the sake of simpliity the AAA staking order was onsidered. This phase onsists of
7 atoms per unit ell and belongs to the P2mm spae group. The optimised geometry of
the hexagonal phase was taken from the early works [115, 29℄ and an AAA staking of
the layers was assumed. In both unit ells, eah C atom is three-fold oordinated as is
one of the four N atoms per ell, while the other three N atoms are two-fold oordinated.
As it an be seen from Figs. 8.7 and 8.8, a di�erent vaany ordering inside the graphiti
planes is found for the orthorhombi system with respet to the hexagonal one.

Starting from the geometry given by [125℄, the orthorhombi struture was optimised
by using the US-PP method. Tab. 8.9 shows the strutural parameters relative to the
orthorhombi phase before and after the full geometry optimisation. The most striking

Starting geometry Optimised struture (US-PP)

Spae group P2mm P2mm
Parameters (�A) a=4.1, b=4.7, =3.2 a=4.1197, b=4.7105, =3.1233
Atomi positions N1 (1a) (0.000 0.000 0.000) N1 (-0.021 0.000 0.000)

N2 (1) (0.000 0.500 0.000) N2 (0.009 0.500 0.000)
N3 (2e) (0.500 0.250 0.000) N3 (0.505 0.258 0.000)
C1 (1) (0.333 0.500 0.000) C1 (0.351 0.500 0.000)
C2 (2e) (0.833 0.750 0.000) C2 (0.824 0.757 0.000)

Table 8.9: Strutural parameters for the orthorhombi struture with AAA staking
order.

modi�ation found in the relaxed struture is the hanging of the geometry relative to
the C3N3 heteroyle. These rings are now no more symmetri as they were before the
strutural relaxation. A shortening in the interlayer distane from 3.20 �A to 3.12 �A is
also found in the optimised system. A brief summary of the most important geometry
hanging in the orthorhombi phase is shown in Tabs. 8.10 and 8.11. The atomi labeling
sheme is given in Fig. 8.8. It is important to note that the optimisation of the hexagonal
phase under the same onditions still leads to a symmetri geometry of the C3N3 rings.
The shemati di�erenes between the two optimised strutures are drawn in Fig. 8.9.
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Starting geometry Optimised struture (US-PP)

Bond lengths (�A) d(N1-C2)=1.359 d(N1-C2)=1.311
d(C2-N2)=1.359 d(C2-N2)=1.431
d(C2-N3)=1.365 d(C2-N3)=1.316
d(C1-N3)=1.359 d(C1-N3)=1.305
d(N2-C1)=1.365 d(N2-C1)=1.409

Table 8.10: Bond lengths before and after the optimisation of the orthorhombi struture.

Starting geometry Optimised struture (US-PP)

Angles (Æ) N1-C2-N3=120.23 N1-C2-N3=122.23
N1-C2-N2=119.54 N1-C2-N2=118.65
N3-C2-N2=120.23 N3-C2-N2=119.12
C2-N3-C1=120.23 C2-N3-C1=122.18
N3-C1-N3=119.54 C2-N3-C1=121.80
C2-N2-C2=119.54 C2-N2-C2=115.62
C2-N1-C

0

2=119.54 C2-N1-C
0

2=121.69
C2-N2-C

0

1=120.23 C2-N2-C
0

1=122.19

Table 8.11: Angles before and after the optimisation of the orthorhombi struture. The
notation prime refers to atoms belonging the adiaent unit ell.

Relative stability between the two graphiti forms

The FP-LAPW and US-PP methods agree quite well with eah other in prediting a
omparable stability between the orthorhombi and the hexagonal models. Tab. 8.12 list
all the alulated ohesive energies for the two strutures. Although the energy referene
is not the same for the two methods (ore states are not inluded in the pseudo-potential
method), the energy di�erene between the two forms show values of similar order of
magnitude, in favour of the orthorhombi variety. The very small di�erene in stability
let us on�rm the possibility of looking at the orthorhombi phase as a reasonable model
for desribing the graphiti-C3N4.

The stabilisation features an be further assessed using hemial bonding riteria
based on the rystal orbital overlap populations [157℄ whih onsist of the expetation
values from operators of the non-diagonal elements of the overlap population matrix,


�

ni (k)Sijnj (k) = 
�

ni (k) h�ki (r) j�kj (r)i nj (k) (8.6)

where Sij represents an element of the overlap matrix of the basis funtions and the
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Figure 8.9: The above �gure shows the general di�erenes in the ring's geometry for the
orthorhombi and hexagonal unit ells.

nj (k) are the expansion oeÆients entering the wave funtion of the nth band (Eq.
8.7).

 k (r) =
X
i

i (k)�ki (r) (8.7)

Partial COOP oeÆients Cij(E) are then obtained by integrating the expression (8.6)
over the Brillion zone:

Cij(E) = Cji(E) =
1


BZ

X
n

Z

BZ

d
3kRe

�

�

ni (k)Sij
�

nj (k)
�
Æ (E � "nk) (8.8)
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FP-LAPW method
Struture LDA PBE PW91 US-PP/LDA

Hexagonal -6.88990 -6.04012 -6.03002 -9.26143
Orthorhombi -6.89044 -6.04070 -6.03059 -9.26174

j�Ej 5.4�10�4 5.8�10�4 5.7�10�4 3.1�10�4

Table 8.12: FP-LAPW and US-PP ohesive energies (eV/atom) for the orthorhombi
and hexagonal latties.

(Dira funtion delta serving as a ounter of states) whih is often loosely designated as
the overlap-population-weighted-DOS. Starting from Eq. (8.8), the total COOP are then
evaluated as the sum over all non-diagonal elements,

C(E) =
X

ij;i6=j

Cji(E): (8.9)

The above alulational proedure has been spei�ally implemented in the ASW method
by Dr. V. Eyert of the University of Augsburg to enable for preise hemial bonding
determinations from self onsistent alulations. For a detailed desription and for sig-
ni�ant examples the reader is referred to the following papers [120, 74, 118℄. The COOP
urves are positive when they desribe bonding states and negative (negative terms in
Eq. (8.8)) when they desribe anti-bonding states; non-bonding states should exhibit
very low intensity-COOP. In order to get more insight into the hemial stability, in
the following Setion, it has also been proposed the alulation of the integrated COOP
(ICOOP) whih is de�ned as follow,

C(E0) =

E0Z
�1

dEC(E): (8.10)

The total and integrated COOPs for the hexagonal and the orthorhombi phases are
shown in Fig. 8.10 and Fig. 8.11, respetively. The two phases nearly show the same
trend in the total COOP; in the lower energy region of the valene band the two urves are
mainly of bonding harater, while at energies loser to the Fermi level the antibonding
states of the p-orbitals start to dominate. The antibonding ounterparts are found in
the ondution band entred at 2 and 7 eV while a bonding behaviour appears at higher
energy. Due to the larger eletron deloalisation present in the orthorhombi lattie the
smearing out of the urve is somehow found with respet to the COOP of the hexagonal
system. The projetion of the total COOP onto the orresponding ontributions arising
from the di�erent atoms (Fig. 8.12) learly shows that in the lower region of the valene
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Figure 8.10: Total COOP for the hexagonal and the orthorhombi phases (ASW).

Figure 8.11: Integrated COOP for the hexagonal and the orthorhombi systems (ASW).
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band (VB) the interation N3-C1 determines the positive ontribution to the COOP
even if all the other arbon-nitrogen interations are showing a bonding harater. At

Figure 8.12: Total COOP for the orthorhombi phase (ASW). For larity eah nitrogen-
arbon interations have been shifted along the vertial axis. The labels B and AB de�ne
the bonding and the antibonding region, respetively.

energy lose the EF the main bonding harater is found for the interations N3-C1 and
N1-C2 while N2-C2 and C2-N3 show a negative COOP. The desription of the bonding
within the layer seems to favour a sort of \snake-like" deloalisation in as far as the N3-
C1 and the C2-N3 globally display a positive interation throughout the valene region.
However, this shows the diÆulty of arrying out this analysis to the point of making it
resemble to the piture expeted by a hemist in his view of the resonant bonds. Suh
restrition is mainly due to the fat that COOP analysis does not use diretional orbitals
view sine all ontributions from px, py and pz are inluded. As shown in Fig. 8.10 the
orthorhombi phase is predited to be slightly more stable than the hexagonal system.
This an be addressed to the lower intensity of the anti-bonding states lose to the Fermi
level. By ontrast, the integrated COOP of Fig. 8.11 has shown a sensible advantage for
the hexagonal model (fr. bonding-states in the region between -5 and 0 eV). Therefore,
even though the investigation of the COOP represents an important step in prediting
the relative stability of di�erent phases, it has here been shown that the disrimination
of the two phases annot only be assessed qualitatively. Nonetheless, it is relevant to
stress that aurate full potential alulations performed on the same systems have also
shown very small energy di�erenes in favour of the orthorhombi phase (Tab. 8.12).
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Figure 8.13: Site projeted DOS plot for the AAA orthorhombi graphiti phase (ASW).
The energy referene along the x-axis is taken with respet to the Fermi level; the y-axis
gives the DOS per atom and unit energy.

In any ase, it an be onluded that the orthorhombi system result stable enough to
be onsidered as one of the most reasonable models for the desription of the layered
graphiti-C3N4.

Eletroni properties

The DOS plot alulated with the ASW method for the orthorhombi phase (Fig. 8.13)
learly shows that a semi-metalli behaviour is present in this new graphiti C3N4 form.
The eletroni levels are now rossing the Fermi energy and a more signi�ant ontri-
bution of the eletroni states from the N1 atom is found at the EF (ompare with N1

peak in Fig. 8.14). In ontrast to the band gap of 0.938 eV alulated for the hexagonal
form, a semi metalli-like behaviour is thus found in the orthorhombi phase. Moreover,
the nitrogen DOS in the orthorhombi struture is broadened with respet to the DOS
of the hexagonal one (Fig. 8.14). This behaviour an be addressed to the strong role
played by the N1 atom in mediating in between neighbouring heteroyle rings. With
the help of the FP-LAPW method the hange in the eletroni properties an also be
visualised by looking at the eletron density maps. The orthorhombi system shows a
lear deloalisation of the harge density along the diretion of the b-axis with a sort of
snake-like shape (Fig. 8.15). Using the same method of alulation, the total density of
states shows, for the orthorhombi phase (Fig. 8.16), an inreasing metalli behaviour.
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Figure 8.14: Site projeted DOS for the hexagonal graphiti model system (ASW).

In partiular, the eletroni states of the nitrogen and the arbon atoms are rossing
the EF as already stressed in the total DOS alulated with the ASW approah. For
the hexagonal system the alulated eletroni density map shows a on�ned eletroni
irulation inside the C3N3 rings [118℄. A band gap of 1.48 eV is found in the total DOS
analysis (Fig. 8.17). The two methods of alulation on�rm the previous hypothesis of
I. Alves et al. about a drasti modi�ation on the eletroni properties.

8.2.6 Calulation of the 13C NMR hemial shifts

As already disussed, a reent interpretation of the X-ray di�ration pattern made on the
graphiti-like sample prepared via bulk hemistry [125, 126℄ has suggested the existene
of a possible orthorhombi system. However, the investigation of the rystal struture
is not yet onluded and further e�orts are needed to state learly whether the unit ell
ould be hexagonal or orthorhombi. Therefore, it beomes of fundamental interest the
possibility to provide theoretial spetrosopi properties able to disriminate between
the two di�erent forms. The synthesis of arbon-13 enrihed samples is atually un-
der investigation in di�erent laboratories to provide insight on the 13C NMR shielding.
Nevertheless, due to the high ost needed to prepare arbon enrihed samples and to
the diÆulty to obtain pure rystalline materials, the related 13C hemial shifts are
nowadays still unknown.

In this subsetion the theoretial alulation of the magneti shielding tensor, Eq.
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Figure 8.15: Valene eletron density map for the orthorhombi graphiti-C3N4 model
system (FP-LAPW).

8.11, has been omputed for both the hexagonal and the orthorhombi phases.

�uv(N) = (�2E=�Bu��Nv )B=0;�=0 (8.11)

Sine the hemial shift depends on the eletron density about a given nuleus (i.e shield-
ing), it is thus expeted that the di�erent eletroni irulation present in the two model
phases ould give rise to a sensible variation on the respetive NMR signals.

Method and omputational details

In this theoretial approah it has been employed the GAUSSIAN98 moleular alulation
pakage [158℄ with an implemented Gauge Independent Atomi Orbital (GIAO) method
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Figure 8.16: Total DOS for the orthorhombi phase (FP-LAPW). Notie the absene of
energy gap at the top of the VB.
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Figure 8.17: Total DOS for the hexagonal phase (FP-LAPW).
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Figure 8.18: Moleular luster relative to the hexagonal graphiti-C3N4.

[159℄ for the ab initio self-onsistent-�eld alulation of the nulear magneti resonane
hemial shifts. In partiular, the 6-311G* basis set has been used with the Perdew-Wang
(PW91) [160℄ funtional 9. The moleular input was reated for eah of the investigated
phases by using a well de�ned graphiti-C3N4 luster. The optimised solid state geometry
(US-PP method) has been ut into 2�2�0 ells and the edges have been losed with
hydrogens to guarantee the eletron neutrality. The obtained lusters are shown in Figs.
8.18 and 8.19 for the hexagonal and the orthorhombi system, respetively. Hydrogens
have been relaxed and the amount of the residual fores present on the atoms have also
been heked.

Comment of the results

The alulated isotropi shieldings are provided in Tab. 8.13 with respet to the standard
tetramethyl silane (TMS). The arbon hemial shift relative to the hexagonal phase has
been estimated by taking the mean values between atoms belonging the symmetri C3N3

ring (i.e. C(11), C(13) and C(25)) while in the orthorhombi phase we have averaged the

9Calulations were performed in ollaboration with Prof. H. �Agren and Dr. B. Shimmelpfennig at

the Department of Theoretial Chemistry, Royal Institute of Tehnology, Stokholm (Sweden).
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Figure 8.19: Moleular luster relative to the orthorhombi graphiti-C3N4.

13C shifts of atoms along the two snake-like paths (C(06), C(10), C(18) and C(19). The
hemial shifts related to arbons whih have hydrogens in the seond nearest neighbour
positions (the edges of the luster) have been negleted (e.g. C(4), C(12), C(25), C(26),
C(24), C(27), C(2) and C(15)). That is, it has only been aounted for an averaged
13C hemial shift by weighting only the luster's atoms whih have a arbon-nitrogen
environment similar to the original periodi struture. As shown in Tab. 8.13 a di�erene
of about 15 ppm has been found in the hemial shifts of the arbon atoms onstituting
the symmetri rings with respet to those belonging the snake-like eletron density path10.
Therefore, alulations suggest that the disrimination between the two phases should
be, a priori, feasible by measuring the 13C NMR hemial shift in graphiti-like samples.

8.2.7 Conlusions

Using three di�erent �rst-priniples tehniques, it has been examined a series of hypothet-
ial C3N4 phases to determine their stability and hardness. With the use of FP-LAPW
method the relative energy trend has been omputed to be in good agreement with the
former PP alulations. The graphiti- and �-C3N4 phases are predited to have the
lowest total energies and the highest ompressibilities, while the two ubi phases are
energetially less stable but with larger bulk moduli. On the ontrary, the ASA based

10This result is in very good agreement with the latest measurements of the 13C NMR shifts for a

polymorphi graphiti-like C3N4 samples (private ommuniation from Dr. M. M�en�etrier).
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Isotropi shielding (13C)
Atomi labelling hexagonal orthorhombi

C(11) 169.3 -
C(13) 169.3 -
C(25) 168.7 -
Mean value 169.1 -
C(06) - 154.0
C(10) - 154.1
C(18) - 154.4
C(19) - 154.2
Mean value - 154.2

Table 8.13: Calulations of the 13C NMR hemial shift (ppm) for the two graphiti-
like phases. For the referene TMS it has been estimated, with the same omputational
approah, a hemial shift of 184.4 ppm.

LMTO and ASW methods annot reprodue a reasonable energy trend due to the diÆ-
ulty of desribing phases with di�erent atomi densities. The ASA approximation �ts
quite well for the ubi strutures but it does not for less ompat systems suh as that
of the graphiti-like. However, even though it is not possible to ompare the relative
stabilities, LMTO and ASW tehniques reprodue the lattie onstants and the bulk
moduli in lose aordane with the FP-LAPW and PP methods. As a matter of fat,
all the three methods predit the highest B for the ubi-C3N4 and the lowest one for the
�-C3N4. This demonstrates that all the employed DFT odes are suitable for simulating
the bulk modulus of arbon nitrides. However, aording to the �nding of D. M. Teter
a di�erent hardness trend has been alulated by using the magnitude of the isotropi
shear modulus as an indiator. The three-dimensional bl-C3N4 phase now shows the
highest G value, whereas the �-C3N4 has the lowest one. Following this more aurate
approah, all the investigated C3N4 rystals behave as hard and elasti materials, though
their mehanial properties are always predited to be subordinated to those of diamond.

The enthalpy for the formation reation, �Ho
f;0, has been alulated for the layered

C3N4 phase (the most stable form for arbon nitrides with C3N4 stoihiometry) to be of
the order of 177 kJ/mol. This result indiates that a thermodynamially stable graphiti-
like C3N4 system ould in priniple be synthesised by using high temperature and high
pressure reation. Moreover, sine an important ativation energy should be required to
break the C-N bonds, it is reasonable to believe that a substane with C3N4 omposition
ould be isolated in a metastable form even at ambient onditions.

The optimisation of the orthorhombi phase with the US-PP method has led to
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an asymmetri equilibrium struture for the \C3N3" rings of the graphiti-C3N4. A
shortening of the arbon-nitrogen bonds has been found along the snake-like path owing
to the �-deloalisation along the b-axis. The alulated FP-LAPW eletron density
map has also on�rmed the possibility for the orthorhombi phase to extend its eletron
deloalisation to the adjaent C3N3 rings. This behaviour is mainly due to the hanging of
the oordination number for the N1 atom whih goes from three in the hexagonal lattie
to two in the orthorhombi phase. The DOS analysis performed with the FP-LAPW
and ASW methods has shown an inreased semi-metalli behaviour for the orthorhombi
system: the eletroni states are rossing the EF and the band gap disappears. Moreover,
the FP-LAPW and US-PP methods agree quite well eah other in prediting a small
energy di�erene between the hexagonal and the orthorhombi phases. Both lattie
systems seem to be a reasonable proposal for the graphiti-C3N4 model, though a lear
hanging in the eletroni properties has been found for the orthorhombi struture.
Finally, from moleular alulations the 13C NMR shifts have been evaluated for both
model systems. A high-�eld shifting of about 15 ppm was alulated for the orthorhombi
phase. Suh an inreased shielding is attributed to the very di�erent eletron density ows
present in the two graphiti-like forms. These phases ould be thus likely disriminated
via NMR analysis at the experimental level.

However, despite the outome of this work we still need to meet furthermore the
experimental �ndings as to the low onentrations of nitrogen found in the arbon ni-
tride �lms. These observations have led to the proposal of arbon nitrides with C11N4

omposition. Its thorough study within the same framework is shown in the next Setion.

8.3 The isoeletroni C11N4 model system

8.3.1 Introdution

The haraterisation of arbon nitride �lms with stoihiometry C3N4 is heavily restrited
by the problem of getting pure rystalline samples with the right C/N ratio. However,
thin �lms with lower nitrogen onentration (5-25 %) have been found relatively easier
to deposit, for example, with reative magnetron sputtering. It is also in this range of
nitrogen ontent that the reently disovered graphiti-like ! fulleren-like transition has
been suggested to take plae. Therefore, in order to add more information to the above
experimental evidene, it is important to use theoretial tools to haraterise arbon ni-
tride model strutures with an higher ratio of C/N, suh as that of C11N4. It beomes
thus relevant to investigate the role played by the nitrogen onentration in determin-
ing the stability, hardness and eletroni properties of the CNx ompounds. For the
sake of simpliity it has here been ompared the C3N4 and C11N4 systems, whih are
isoeletroni to eah other. For this purpose two C11N4 phases, namely � and �, have
been presented and investigated with density funtional theory methods within the loal
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density approximation. These phases ontain less than � 30 % of nitrogen than the well
known C3N4 stoihiometry and are formally derived from the so-alled pseudo-ubi form
of C3N4 (i.e. bl-C3N4). Cohesive properties, bulk and elasti moduli have been alulated
and a full detailed analysis of the DOS and Energy Loss Near Edge Struture (ELNES)
is presented. Calulations suggest that the lowering of the nitrogen onentration does
not prevent the �nding of ultra-hard materials and indeed brings a signi�ant inrease
in the ohesive energy and hardness of arbon nitrides.

8.3.2 Methods and omputational details

Calulations of the optimised geometries, relative stability and elasti onstants were
performed ab initio within the loal density approximation to the density funtional
theory using the Ceperly-Alder [56℄ exhange orrelation funtional as parameterised by
Perdew and Zunger [60℄ and the US-PP method [61, 58℄. The alulations were omputed
by using an energy ut-o� of 434.8 eV for the planewave basis set and onverged with
respet to the k-point integration. The tetrahedron method with Bl�ohl orretions
[62℄ was applied for both geometry relaxation and total energy alulations. Brillouin-
zone integrals were approximated using the speial k-point sampling of Monkhorst and
Pak [63℄. The investigation of the density of states and of the Eletron Energy Loss
Spetrosopy (EELS) spetra were arried out with the density funtional theory FP-
LAPW program [68℄. The loal spin density approximation aording to Perdew and
Wang was employed [47℄. The planewave ut-o� was adjusted so that approximately 145
planewaves per atom were used for the phases with C11N4 stoihiometry. The di�erenes
in total energies were onverged to below 0.001 eV with respet to k-points integration.
For arbon and nitrogen atom types the same muÆn-tin radius (Rmt=1.35 �A) was used
and maintained �xed for all the investigated strutures. Only for the graphiti C11N4

model a relatively smaller Rmt value of 1.24 �A was employed. For diamond, graphite
and the other isoeletroni C3N4 phases the amount of k-points and ut-o� parameter
were in aordane with our previous alulations (fr. Setion 8.2 and Ref. [117℄).

8.3.3 The analysed rystalline strutures

In order to investigate the di�erent properties of the C3N4 and C11N4 stoihiometries it
has here been presented a ross-heking between two di�erent forms of arbon nitrides:
the stable two-dimensional graphiti phase and the hard three-dimensional pseudo-ubi
system. First of all, the graphiti form has been hosen beause representative for a
stable layered CNx network whereas the pseudo-ubi form stands for an hard three-
dimensional system. Seondly, sine many sp3-bonded C3N4 phases have been proposed
in the early works [29, 115, 114℄, as a starting point of our investigation we thought
worthwhile to fous the attention only on ertain phases for whih the generation of the
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analogous C11N4 stoihiometry an be easily �gured out, for example, by simply doubling
the length of one of the unit ell vetors. The pseudo-ubi system results as a perfet
example of a three-dimensional C3N4 phase from whih the orresponding C11N4 an be
readily generated without any drasti inrease of the number of inequivalent atoms per
unit ell. Further details are given separately in the following subsetions for eah of the
analysed CNx forms.

The graphiti and pseudo-ubi C3N4

The graphiti-like struture (graphiti-C3N4) has been theoretially predited to be the
most stable C3N4 phase [29, 117, 118, 115, 114℄. For simpliity, the same intra-layer
geometry as in the hexagonal struture (ABA staking) introdued by Teter et al. [29℄
has been assumed in our graphiti-like model. Inside the layer eah of the C atoms
is three-fold oordinated as is one of the four N atoms per ell, while the other three
nitrogens show a two-fold oordination (see Fig. 8.2). The whole system was fully
relaxed with the pseudo-potential method assuming an AAA paking sequene between
the sheets. Suh relaxation was required in order to adapt the intra-layer geometry to the
new staking order. Despite the fat that the AAA paking is not the most energetially
stable form, it has been expliitly hosen to stak the layers diretly on top of eah other
to enable an easier omparison of the results with the analogue graphiti-like C11N4 form.
As a matter of fat, a graphiti-like C11N4 system with a staking sequene ABA or ABC
would have led to a larger number of inequivalent atoms per unit ell, yielding thus to
an enormous inreasing of the alulational time. Beside this, sine the total energy
interation found in between the layers is weak (as in the ase of graphite) it has been
�nally deided to ompare the two graphiti-like stoihiometries by assuming a ommon
AAA paking of the sheets.

The pseudo-ubi struture (bl-C3N4) shown in Fig. 8.20 is usually alled \defet zin-
blende" and exhibits a P43m symmetry and ontains 7 atoms per unit ell [29, 114℄. This
phase has been previously predited by A. Y. Liu et al. [114℄ by substituting arbon and
nitrogen in the pseudo-ubi �-CdIn2Se4 [161℄. Sine the bl-C3N4 originally optimised
by A. Y. Liu in Ref. [114℄ has shown some residual fores in our pseudo-potential ode,
it has been deided to fully relax again the system for better results. The new optimised
geometry is now shown in Table 8.14.

The graphiti-, �- and �-C11N4 phases

The graphiti-C11N4 depited in Fig. 8.21 has been theoretially introdued in our In-
stitute by A. Snis et al. in 1999 [162, 163℄. This phase is isoeletroni with diamond
and C3N4 [117℄ and has been suggested as a possible hard material [104℄. The on�gu-
ration with layers in a staking sequene AAA has been fully geometry optimised with
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Figure 8.20: Ball and stik model of the bl-C3N4 struture. Figure shows the projetion
of the atoms along the [001℄ plane.
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Figure 8.21: One layer of the graphiti-C11N4 model phase.
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bl-C3N4 �-C11N4 �-C11N4

Cubi Orthorhombi Tetragonal
P43m (215) P222 (16) P42m (111)

7 15 15
C1(0.5000, 0.5000, 0.0000) C1(0.5000, 0.5000, 0.2559) C1(0.0000, 0.5000, 0.2575)
N1(0.2553, 0.2553, 0.2553) C2(0.0000, 0.5000, 0.5000) C2(0.0000, 0.0000, 0.0000)

C3(0.0000, 0.0000, 0.2793) C3(0.5000, 0.5000, 0.0000)
C4(0.2315, 0.2368, 0.1392) C4(0.2552, 0.2552, 0.1281)
C5(0.0000, 0.5000, 0.0000) C5(0.0000, 0.0000, 0.5000)
C6(0.0000, 0.0000, 0.0000) N1(0.2355, 0.2355, 0.6254)
N1(0.7568, 0.2680, 0.3803)

a=b==3.4087 a=3.4454 a=b=3.4944
b=3.5540
=7.2394 =6.9004

90, 90, 90 90, 90, 90 90, 90, 90

Table 8.14: Optimised parameters for the bl-C3N4 and the �-, �-C11N4 phases. The
table shows rystal system, spae group, atoms�unit ell�1 and the atomi positions.
Cell onstants are expressed in unit of �A and the angles �, �,  in degrees.

the same ab initio pseudo-potential planewave program [58℄. The resulting geometry is
listed in Tab. 8.15. It is ertain that suh a model system is not likely to show low
ompressibility due to the presene of weak inter-layer bonding. Nonetheless, its major
interests arise from the possibility to represent a low energy arbon rih model struture.
The pseudo-ubi C11N4 on�guration has been obtained from the analogue pseudo-ubi
C3N4 phase by simply doubling the unit ell along the a-lattie vetor. In order to reah
the right stoihiometry one arbon has been added in the middle of the seond ell, while
the four nitrogen atoms, onstituting the \nitrogen-hole", have been substituted with
four arbons [164℄. This phase is here alled �-C11N4 (Fig. 8.22). Following the same
proedure but performing a slightly di�erent atomi substitution, another phase alled
�-C11N4 an be obtained (Fig. 8.23). The relaxation of the three-dimensional phases
gives the �nal optimised geometries as shown in Table 8.14.

8.3.4 Relative stability and phase transitions

There is no doubt that one of the most important e�ets in determining the stability of
arbon nitrides is the role played by the non-bonded N-N repulsions. These unfavorable
eletrostati interations have already been demonstrated to be relevant in aounting
for the stability of some of the C3N4 phases [165, 138℄. In fat, an interesting attempt to
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c

b

Figure 8.22: Crystal struture of the tetragonal � � C11N4. Projetion along the [100℄
plane exhibiting the \nitrogen-hole".

c

a

Figure 8.23: Projetion of the orthorhombi � �C11N4 rystal struture along the [010℄
plane.
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Property graphiti-C11N4

Crystal System Orthorhombi
Spae Group Pmm2 (25)

Atoms/unit ell 15
Atom type Coordinates (x, y, z)

C1 (0.5000, 0.5000, 0.4425)
C2 (0.5000, 0.2600, 0.2050)
C3 (0.5000, 0.2490, 0.1875)
C4 (0.5000, 0.5000, 0.2735)
C5 (0.5000, 0.2450, 0.5265)
C6 (0.5000, 0.0000, 0.4375)
C7 (0.5000, 0.0000, 0.7575)
C8 (0.5000, 0.0000, 0.2715)
N1 (0.5000, 0.0000, 0.9305)
N2 (0.5000, 0.5000, 0.9495)
N3 (0.5000, 0.2360, 0.6835)

Cell onstants (�A) a=3.4125; b=4.9214; =8.5198
�, �,  (Æ) 90, 90, 90

Table 8.15: Optimised parameters for the graphiti-C11N4 phase.

remove suh interations was made in 1995 by T. Hughbanks and Y. Tian [165℄, who pro-
posed the substitution of one N atom with one C to attenuate the ritial N-N lone pair
repulsion in the �-C3N4 system. However, suh a proedure imposes in most of the ases
the use of new arbon-rih models (e.g. C4N3) for whih the departure from the isoele-
troni systems beomes inevitable. In order to overome this problem, and keep working
on isoeletroni models, it has here been studied the C11N4 system within whih the ele-
trostati ontributions are kept similar to the analogue C3N4 models. One may notie
that, a muh more diÆult and interesting task would have been the use of isoeletroni
model systems where the smothering of the N-N interations is provided, for example,
by avoiding lone pairs pointing diretly one to eah other. Unfortunately, despite many
e�orts it has not been possible to provide suh a model C11N4 phase. Nonetheless, fo-
using the attention only on the hanging of the C/N ratio, it has been found that the
interations between sp2-hybridised nitrogens (e.g. atoms N3 and N2 of the 12-enters
arbon-nitrogen rings of Fig. 8.21) is not the only e�et involved in aounting for the
stability of arbon nitrides. The larger ohesive energy revealed in the C11N4 stoihiome-
try is here assigned to the presene of an inreased number of arbon-arbon onnetions
(see the ratio R(C�C=C�N) in Table 8.16), whih have large bonding energies. Aording
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Struture �EUS�PP �EFP�LAPW R(C�C=C�N)

graphiti-C11N4 -9.6967 -7.9214 26/12
�-C11N4 +0.034 +0.028 16/12

graphiti-C3N4 +0.435 +1.030 0/14
bl-C3N4 +0.581 +1.176 0/12
�-C11N4 +0.993 +1.588 16/12

Table 8.16: Cohesive energy, �E (eV/atom), for various CNx phases. Free energy values
are saled with respet to the stable graphiti-C11N4 struture. The ratio of the number
of hemial bonds per unit ell, R(C�C=C�N), is also shown.

to the bond ounting rule [166, 167, 20, 153℄, the most stable struture maximises the
number of highly energeti bonds. It is well known that bonds between elements from the
2nd row of the periodi table in whih one or both elements possess lone pairs are weaker
than bonds in whih neither of the onstituents show lone pairs. As a matter of fat, the
C-N bonds (260-320 kJ/mol) are not as strong as C-C bonds (� 350 kJ/mol) [168, 169℄.
Therefore, it is mostly due to the presene of a large number of hains and/or rings,
made of highly energeti C-C bonds, that the C11N4 stoihiometry results energetially
favoured over the C3N4 one. As shown in Fig. 8.24 and Table 8.16 this stoihiome-
try is predited, from both US-PP and FP-LAPW methods, to have a ohesive energy
larger than that of C3N4. Its graphiti form is energetially well below, 0.435 eV/atom
with US-PP, the orresponding graphiti-C3N4 as is the three-dimensional � phase (0.401
eV/atom). In partiular, the layered C11N4 form results energetially more stable than
the orresponding C3N4 model beause of the presene of an extended graphiti-like
matrix around the arbon-nitrogen ring in the diretion of the -axis (Fig. 8.21). The
introdued arbon system with thirteen C-C bonds per layer is here responsible of an
evident lowering of the energy of the system. Suh a model phase results also as the
most stable C11N4 form not only beause of the highest fration of C-C/C-N bonds but
also beause of the possibility to deloalise the nitrogen's lone pair (atoms N2 and N3)
into the graphiti-like matrix. Similarly, the same deloalisation e�et is present in the
graphiti-C3N4, where lone pairs an be dispersed into the �-eletron irulation of the
C3N3 rings. It is beause of this peuliar harateristi that layered phases represent, in
both stoihiometries, the low energy struture models [170℄. In three-dimensional phases
the above possibility is limited by the presene of a uniform framework with sp3 bonds.
However, the introdued diamond-like matrix with sixteen strong C-C bonds per unit ell
(Tab. 8.16) limits in the � phase (Fig. 8.22) the propagation of the neighbouring arbon-
nitrogen holes to the b-axis. Compared to the bl-C3N4 analogue (Fig. 8.20), where eah
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Figure 8.24: Free energies (eV/atom) versus atomi volumes (�A3/atom) for various C3N4

and C11N4 phases (US-PP).

of the arbon-nitrogen rings is surrounded by four others (network of pure C-N bonds),
it has here been reahed a mixed C-C/C-N system using the same averaged number of
valene eletrons. It is thus on the possibility to �t and weight the arbon-nitrogen ring
into a more stable three-dimensional arbon network that the �-C11N4 results energet-
ially favourable over the bl-C3N4. However, in spite of this general �nding a very low
stability has been predited for the � phase, where the presene of a \arbon-hole" (Fig.
8.25) drastially destabilises the three-dimensional C11N4 arrangement. More preisely,
the poor stability an be here attributed to the presene of arbon atoms (i.e. C4, C5

and C6) with dangling bonds in the arbon avity. Owing to these onsiderations, in the
following setions, we will mostly fous our attention on the � model.

Only a modest pressure is needed to overome the energy barrier separating the
graphiti- and the �-C11N4 phases and to indue a transition between them. Estimation of
this pressure from the slope at the ommon energy/volume intersetion gives a hydrostati
transition pressure neessary for the transfer less than � 2 GPa (1.7 GPa). Again from
the slope at the ommon energy intersetion it has been alulated that a pressure of
about 82 GPa is needed to go from the graphiti- to the �-C11N4 phase.
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C6

C4

C1

Figure 8.25: Front view of the \arbon-hole" in �-C11N4.

Some thermodynami onsiderations

To get further insight into the di�erent stabilities of the CNx stoihiometries a theoretial
estimation of the standard molar enthalpy hange of formation at 0 K is here presented.
The �Ho

f;0 omputed for the formation reation given in Eq. 8.12 has been estimated
with the FP-LAPW to be positive and sensibly larger than that of the of C3N4 (fr. Eq.
8.1 in Se. 8.2.3, p. 48).

11C() + 2N2(g) ! C11N4() (8.12)

By using the alulated ohesive energies of Tab. 8.17 to estimate the formation en-
thalpies shown in Tab. 8.18 it may be predited that a layered form of C11N4 ould be,
\in the best ase", only in ompetition with the formation of a three-dimensional C3N4

phase (e.g. �-C3N4). In partiular, for the two graphiti-like forms the di�erene in the
magnitudes of �Ho

f;0 has been omputed to be between 77 and 83 kJ/mol in favour of
the graphiti-C3N4, depending on the applied funtional. When onsidering the synthesis
of arbon nitrides with an extended sp3-bonded network (the two � phases), the same
trend in the enthalpy of formation has been highlighted. Calulations show again an
enthalpy di�erene between 69 and 96 kJ/mol in favour of the C3N4. A straightforward
explanation an be found in the energy balane proposed in Eq. 8.12. From the equa-
tion of the formation reation it appears quite obvious that the energy required for the
breaking of the strong C-C bonds an be hardly ompensated with the ohesive energy
alulated for the C11N4 stoihiometry (� 1.0 eV/atom larger than that of C3N4 with
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LDA). Therefore, from a pure thermodynami point of view the C3N4 omposition should
be generally favoured over the synthesis of the isoeletroni C11N4.

funtional graphiti-C11N4 �-C11N4

LDA -7.92 -7.89
PBE -6.95 -6.91
PW91 -6.94 -6.90

Table 8.17: Calulated FP-LAPW ohesive energies of graphiti- and �-C11N4. Values
are given in eV/atom.

Standard enthalpy of formation in kJ/mol
CNx phase LDA PBE PW91

graphiti-C3N4 (hex.) 121.65 (121.65) 176.51 (217.04) 178.50 (219.03)
graphiti-C3N4 (orth.) 121.29 (121.29) 176.12 (216.64) 178.13 (218.65)

�-C3N4 128 183 185
�-C3N4 184 253 255

graphiti-C11N4 197 (197) 257 (407) 259 (405)
�-C11N4 240 302 317

ubi-C3N4 321 389 391
bl-C3N4 336 419 415

Table 8.18: Computed standard molar enthalpy of formation (�Ho
f;0) for the two CNx

stoihiometries (x=1.33 and 0.36) by using the ohesive energies seen in Tabs. 8.2, 8.12
and 8.17. Values in parenthesis orrespond to the use of graphite as a starting material.

At �rst sight, this result seems to be in ontrast with the experiene aumulated in
depositing arbon based ompounds with magnetron sputtering, whih is one of the most
dominating proesses for depositing hard materials. However, it is important to speify
that this onlusion has been drawn by omparing results oming from a limited number
of model systems, whih have been assumed to be representative for the layered and the
three-dimensional forms. Therefore, it annot be exluded that a further spanning of
the spae of the rystal strutures might lead to disover other stable phases with a very
di�erent trend in the enthalpy of formation. Further, the experimental results are mostly
relevant to amorphous samples with a graphiti-/fulleren-like form for whih the analogy
with the presented rystalline models is somehow arbitrary. Finally, a full kineti study
should be introdued for a omplete understanding of the problem. It is ruial to note
that the synthesis of arbon nitrides is usually performed at high temperatures where
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kineti fators an play an important and predominating role. The stability of graphiti-
C11N4, for example, annot only be inferred by aounting for its thermodynami but
also needs a deep kineti investigation to understand its real phase stability. As a matter
of fat, C11N4 ompounds ould result thermodynamially unstable but at the same time
kinetially more favourable than C3N4.

8.3.5 Calulations of the elasti and bulk moduli

In what follows we eluidate how it has been dedued the omplete set of elasti onstants
for the presented rystalline materials. The elasti onstants determine the response
of the rystal to an externally applied strain (sti�ness) and provide information about
the bonding harateristis between adjaent atomi planes, anisotropi harater of the
bonding and strutural stability. The main problem in estimating elasti onstants from
�rst-priniples is not only the requirement of aurate methods for evaluating the total
energy but also the heavy omputations involved in their alulation. In partiular, if
the symmetry of the system is redued, the number of independent moduli inreases
and hene a larger number of distortions is required to alulate the full set of elasti
onstants [34℄. For an orthorhombi material (like �-C11N4) there are nine independent
elasti onstants referred to as 11, 22, 33, 44, 55, 66, 12, 13 and 23 [171℄. They an be
dedued by applying small strains to the equilibrium lattie and determine the resulting
hange in the total energy. The entire set of the elasti onstants were determined by
straining the lattie vetors aording to the rule,

~R = R(1 + Æ) (8.13)

where ~R and R are, respetively, the matrix that ontains the omponents of the distorted
and undistorted lattie vetors, 1 is the unity matrix and Æ the symmetri distortion
matrix.

Æ =

0
B� Æ11 Æ12 Æ13

Æ21 Æ22 Æ23

Æ31 Æ32 Æ33

1
CA (8.14)

The internal energy of a distorted rystal E(V; Æ) an be Taylor expanded in powers of the
omponents of Æ with respet to the initial internal energy of the stati rystal E(Vo; 0)
in the following way:

E(V; Æ) = E(Vo; 0) + Vo

nX
k=2

X
i1:::ik

1

k!
i1:::ikÆi1 :::Æik (8.15)

V and Vo denote the volume of the strained and unstrained rystal, respetively and
i1:::ik the kth-order elasti onstants of the unstrained rystal in the Voigt notation. In
Eq. 8.15, the distortion omponents are de�ned aording to Æk = Æij for k = 1, 2, 3
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Strain Parameters (unlisted Æij=0) 2�E=
�
VoÆ

2
�

1 Æ11 = Æ 11

2 Æ22 = Æ 22

3 Æ33 = Æ 33

4 Æ11 = Æ22 = Æ33 =
1

(1�Æ2)1=3
� 1; Æ23 = Æ32 =

Æ

(1�Æ2)1=3
� 1 444

5 Æ11 = Æ22 = Æ33 =
1

(1�Æ2)1=3
� 1; Æ13 = Æ31 =

Æ

(1�Æ2)1=3
� 1 455

6 Æ11 = Æ22 = Æ33 =
1

(1�Æ2)1=3
� 1; Æ12 = Æ21 =

Æ

(1�Æ2)1=3
� 1 466

7 Æ11 =
1+Æ

(1�Æ2)1=3
� 1; Æ22 =

1�Æ

(1�Æ2)1=3
� 1; Æ33 =

1

(1�Æ2)1=3
� 1 (11 + 22 � 212)

8 Æ11 =
1+Æ

(1�Æ2)1=3
� 1; Æ22 =

1

(1�Æ2)1=3
� 1; Æ33 =

1�Æ

(1�Æ2)1=3
� 1 (11 + 33 � 213)

9 Æ11 =
1

(1�Æ2)1=3
� 1; Æ22 =

1+Æ

(1+Æ2)1=3
� 1; Æ33 =

1�Æ

(1�Æ2)1=3
� 1 (22 + 33 � 223)

Table 8.19: Strains and elasti moduli for the orthorhombi phase.

and Æk = 2Æij for k = 4, 5 and 6. The quantity E(V; Æ) has been omputed by using the
�rst-priniples theory for di�erent strains of the system. The Taylor expansion limited
to the seond-order is here employed for the �tting of the numerial data. The elasti
onstants, Vo and Eo = E(Vo; 0) are the �tting parameters.

In partiular, the independent elasti onstants for an orthorhombi material have
been found by onsidering nine di�erent matries Æ to whih orrespond nine di�erent
expressions of the total energy (see Table 8.19). The omponents of the distortion matrix
(Eq. 8.14) whih do not appear in the table are set equal to zero. For eah of the
applied strains, the total energy of the system has been omputed for seven di�erent small
distortions (Æ = �0:02n; n = 0 � 3). Relaxation of the internal degrees of freedom has
also been arried out for the entire set of deformations. Finally, the elasti onstants have
been found by �tting the energies against the distortion parameter. A similar proedure
has been utilised to dedue the six distint, non-vanishing elasti onstants (11, 12, 13,
33, 44 and 66) [172℄ for a tetragonal solid (�-C11N4) and the three independent moduli
(11, 12 and 44) [173℄ for a ubi rystal system (bl-C3N4). The omplete list of the
applied strains is shown in Table 8.20 and 8.21 for the tetragonal and the ubi systems,
respetively.

After having ompleted the alulation of the whole set of elasti onstants it is
possible to estimate, for eah of the investigated strutures, the shear moduli by simply
applying the following linear relations. Aording to the �nding of A. P. Gerk and D. M.
Teter, it has been assumed that the larger is the value of G, the harder is the material.
The general formula of the isotropi shear modulus, GIso, was initially expressed as
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Strain Parameters (unlisted Æij=0) �E=Vo

1 Æ11 = Æ22 = Æ (11 + 12) Æ
2

2 Æ11 = Æ22 = Æ; Æ33 =
1

(1+Æ2)2
� 1 (11 + 12 + 233 � 413) Æ

2

3 Æ33 = Æ 1
2
33Æ

2

4 Æ11 =
h
(1+Æ)
(1�Æ)

i 1
2 � 1; Æ22 =

�Æ11
(1+Æ11)

(11 � 12) Æ
2

5 Æ31 = Æ32 = Æ13 = Æ23 =
1
2
Æ; Æ33 = Æ2=4 44Æ

2

6 Æ12 = Æ21 =
1
2
Æ; Æ11 = Æ22 =

�
1 + Æ2

4

�1
2 � 1 1

2
66Æ

2

Table 8.20: Strains and elasti moduli for the tetragonal phase.

follows by A. Reuss in 1929 [36℄:

GIso =
1

15
[(11 + 22 + 33)� (23 + 31 + 12) + 3(44 + 55 + 66)℄ (8.16)

Taking into aount the proper symmetry relations, this modulus modi�es as in the
following for an orthorhombi, tetragonal and ubi system, respetively:

Go =
1

15
(11 + 22 + 33 � 12 � 13 � 23) +

1

5
(44 + 55 + 66) (8.17)

Gt =
1

15
(211 + 33 � 12 � 213 + 644 + 366) (8.18)

G =
1

15
(311 � 312 + 944): (8.19)

Furthermore, for the alulation of the bulk modulus an isotropi strain has been applied
to the rystal ell. Then, the Birh type equation of state [31℄ has been used to adjust
the variation of the energy versus volume. This equation represents a well known and
tested �tting form able to desribe P, V, T data for a wide lass of solids. The main
assumption made is that no phase transition ours during ompression of the material.

Analysis of the results and disussion

In this subsetion we omment the results ahieved with the US-PP method (Table 8.22)
by straining the rystals in a volume and shape hanging way. The alulated bulk
modulus for the �-C11N4 has been found to be 460.6 GPa. This value is larger than the
estimated moduli for the bl-C3N4 (425.9 GPa), ubi boron nitride (396.6 GPa) and lose
to those of ubi (463.7 GPa) and hexagonal (456.0 GPa) diamond [153℄. On the ontrary,
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Strain Parameters (unlisted Æij=0) Energy

1 Æ11 = Æ22 = Æ; Æ33 =
1

(1+Æ2)
� 1 �E=6VoC

0Æ2

2 Æ12 = Æ21 = Æ; Æ33 =
Æ2

1�Æ2
�E=2Vo44Æ

2

Table 8.21: Strains and elasti moduli for a ubi system. By alulating the tetragonal
shear onstant, C 0 = 1

2
(11 � 12), and the bulk modulus,B = 1

3
(11 + 212), it is possible

to extrat 11 and 12.

for the � phase a muh lower B (367.2 GPa) has been alulated. However, its magnitude
approahes that of ubi boron nitride. As already disussed, the di�erene in the bulk
moduli between � and � an be roughly related to the lower stability of �. Adjusting
the variation of the energy versus the unit ell volume for the layered C3N4 and C11N4

phases we found the following B numbers: 209.5 GPa and 226.0 GPa. These moduli are
quite lose to eah other indiating that the hardness of layered arbon nitrides remains
mostly invariant with respet to a signi�ant lowering of the nitrogen onentration.

The systemati investigation of the lattie stability was originally done by M. Born
and K. Huang [174, 175℄, who showed that by expanding the internal rystal energy in
a power of series in the strain and by imposing the onvexity of the energy, it is possible
to obtain stability riteria in terms of a set of onditions on the elasti onstants. The
requirement of mehanial stability in a ubi rystal leads, for example, to the following
restritions on the three elasti onstants [176℄

(11 � 12) > 0; 11 > 0; 44 > 0; (11 + 212) > 0: (8.20)

For a tetragonal rystal, whih has six independent elasti onstants, these onditions
are as follows [176℄

(11 � 12) > 0; (11 + 33 � 213) > 0;

11 > 0; 33 > 0; 44 > 0; 66 > 0;

(211 + 33 + 212 + 413) > 0: (8.21)

Finally, for orthorhombi rystals with nine elasti onstants, the mehanial stability
leads to the following restritions [176℄

(11 + 22 � 212) > 0; (11 + 33 � 213) > 0; (22 + 33 � 223) > 0;

11 > 0; 22 > 0; 33 > 0; 44 > 0; 55 > 0; 66 > 0;

(11 + 22 + 33 + 212 + 213 + 223) > 0: (8.22)

The omplete set of zero-pressure elasti onstants are shown in Table 8.22 together with
the related isotropi shear moduli. The �rst thing to note is that the whole sets of ij
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Property bl-C3N4 �-C11N4 �-C11N4

11 842.9 (840) 959.4 728.5
12 217.4 (213) 151.7 206.9
13 - 261.0 205.6
22 - - 727.2
23 - - 209.1
33 - 889.0 616.2
44 454.6 (452) 617.8 252.8
55 - - 348.0
66 - 589.0 235.5
G 397.9 (397) 507.2 263.9
B 425.9 (425) [425.9℄ 460.6 [461.7℄ 367.2 [368.3℄

B
0

3.80 5.27 3.61
Vo 5.66 5.58 5.91
Eo -9.1162 -9.6610 -8.7033
� 3.86 3.71 3.52

Table 8.22: Theoretial values of the elasti onstants (ij in GPa), isotropi shear mod-
ulus (G in GPa), bulk modulus (B in GPa), its pressure derivative (B

0

), atomi volume
(Vo in �A3/atom), ohesive energy (Eo in eV/atom) and atomi densities (� in g/m3) of
bl-C3N4 and �-, �-C11N4. Values in round brakets refer to the work of A. Y. Liu and
R. M. Wentzovith [114℄ whereas those in square brakets onern the bulk modulus
alulated by ombining the elasti onstants.

satisfy all the above onditions, indiating a ertain mehanial stability for the � and
� phases. Therefore, even though they are not the most energetially favored strutures
for the C11N4 stoihiometry, they ould be at least metastable materials. The alulated
shear moduli validate the same hardness trend as found with the estimated bulk moduli.
The isotropi G value for the � phase is at about 110 GPa higher than that of bl-C3N4,
indiating a lear hardening of the C11N4 stoihiometry over the C3N4 analogue. As
expeted, for the � phase the alulated modulus has been found well below the value of
the � struture, on�rming thus the destabilising e�et of the arbon-holes with dangling
bonds.

It is ertain that the introdution of arbitrary deformations of the unit ell followed
by the alulation of the total energy, whih is many orders of magnitude larger than
elasti energy, tends to derease the auray of the alulated moduli. Nonetheless, the
extrapolated isotropi shear moduli for diamond and ubi boron nitride have reently
been shown to be in good agreements with the experimental results [153℄. Consequently,
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the large and positive ij values found for the three-dimensional �-C11N4 model system
an be taken as a referene in aounting for its large hardness. It is also worth to note
that by augmenting the number of sp3 arbon tetrahedra, the hardness of the material
gets loser to that of diamond (Gexp=535 GPa and Bexp=443 GPa [29℄; Gal=558.5
GPa and Bal=463.7 GPa [153℄). As a matter of fat, the resistane to deformation is
improved in the � phase by the presene of a large number of sp3 arbons whih have
diÆult aess to higher eletroni states, namely d-states. From this piture, the proess
of rehybridisation, whih takes plae after deformation of the solid, results not favored
leading thus to less ompliant bonds. It is beause of this harateristi that diamond
will probably remain the hardest known material with high elasti onstants values and
a large shear modulus [29, 177℄.

Poisson's ratio and Young's modulus For all the investigated rystal strutures,
the bulk modulus of a polyrystalline material has also been estimated in the Voigt's
approximation from the following equation:

B =
1

9
(11 + 22 + 33) +

2

9
(12 + 13 + 23) (8.23)

The alulated values are given in the square brakets of Tab. 8.22. The bulk moduli
omputed from the elasti onstants and from the �t to a Birh equation are almost the
same, giving thus a onsistent predition of the ompressibility of the analysed phases.
Beause of the speial signi�ane of the Young's modulus11 and Poisson's ratio for the
tehnologial and engineering appliations, these quantities have also been alulated by
ombining together the bulk and shear moduli. In partiular, the elasti properties of
materials may be mainly haraterised by the Poisson's ratio, whih gives a measure of
the stability of a rystal against shear. The Young's modulus, E, and Poisson's ratio, �
are given by

E =
9BG

3B +G
(8.24)

� =
3B � 2G

2(3B +G)
(8.25)

The alulated Poisson's ratios and Young's moduli are shown in Tab. 8.23. The smaller
value of the Poisson's ratio for the �-C11N4 indiates that this phase is relatively stable
against strain. The estimated Young's moduli support the same hardness trend as already
predited with the use of B and G.

11The Young's modulus, E, (also known as the elasti modulus) is de�ned as the ratio between stress

and strain and indiates the sti�ness of the material.
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bl-C3N4 �-C11N4 �-C11N4 diamond

B/G 1.07 0.91 1.40 0.83 (0.83)
E 910 1114 639 1196 (1140)
� 0.144 0.098 0.211 0.070 (0.069)

Table 8.23: Table shows the alulated B/G ratio, Young's modulus (GPa) and Poisson's
ratio (dimensionless) of bl-C3N4 and �-, �-C11N4. Diamond has also been listed as a
referene material. Values in round brakets onern the properties of CVD diamond as
ompiled in Ref. [178℄.

Brittleness and dutility In order to predit the brittle and dutile behaviour of
materials, S. F. Pugh [179℄ introdued in 1954 the quotient of bulk modulus to shear
modulus of polyrystalline phases (B/G) by onsidering the shear modulus G representing
the resistane to plasti deformation and the bulk modulus B the resistane to frature.
Therefore, with suh an assumption a high (low) B/G value beomes assoiated with the
dutility (brittleness) of a ertain solid. The ritial number whih separates dutile and
brittle materials has been �xed at about 1.75.

The alulated B/G ratio for the phase �-C11N4 is 0.91 (see Tab. 8.23) whereas for
the analogue bl-C3N4 1.07. These results suggest that both CNx stoihiometries provide
rather brittle materials, though their values are still slightly higher than that of diamond
(B/G=0.83).

8.3.6 Eletroni struture

Density of states of bl-C3N4

The alulated eletroni density of states (DOS) of bl-C3N4 at the equilibrium struture
is shown in Fig. 8.26. A band gap, Eg, of 2.86 eV has been omputed with the use of
LDA approximation. From the partial omponents of the DOS, it has been found that
the lower part of the valene band onsists mainly of 2s orbitals from nitrogen and arbon
atoms, whereas the middle portion (-15 eV � E � -5 eV) is dominated by the mixing
of the C and N 2p orbitals. The very sharp VB edge indiates the presene of highly
loalised N states with 2p harater. These states an be attributed to the non-bonding
eletrons belonging the so-alled \nitrogen-hole". Finally, the portion of the ondution
band in between 5 and 15 eV is mostly dominated by the states of arbon and nitrogen
2p.
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Figure 8.26: The alulated DOS for the bl-C3N4 phase (FP-LAPW).
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Density of states of �- and �-C11N4

The total DOS for the � and the � phases are illustrated in Fig. 8.27. The �rst struture
shows a band gap of 2.40 eV whereas in the latter no Eg has been found (fr. the
two density of states in Fig. 8.27). The total DOS relative to � displays nearly the
same 2p states mixing as in the isoeletroni bl-C3N4. The peak loated at the top
of the VB still onsists of nitrogen states with 2p harater. Both the VB and CB
are sharper and indiative of a larger eletron density. As already mentioned, the �

phase does not show any band gap. This is mainly due to the presene of arbon states
loated just above the Fermi energy. Their existene is assigned to the highly distorted
tetrahedral geometries of the atoms onstituting the \arbon-hole". More preisely, the
most prominent ontributions have been found (partial DOS not shown here) from the
2p orbitals of the atoms C6 and C5, whih are omposing the arbon avity.

Calulation of Energy Loss Near Edge Struture

For light elements like arbon, boron and nitrogen, eletron energy loss spetrosopy
is a useful tehnique beause of its ability to di�erentiate the types of bonding in a
polymorphi material. The harateristi �ne struture in the �rst few eV beyond the
beginning of the ore loss ionisation edges supplies the so-alled oordination �ngerprints,
whih an be used to distinguish di�erent phases in omplex systems. Sine in our ase
of theoretially predited CNx phases suh referene spetra do not exist, it beomes
worth having a theoretial approah to simulate the ELNES. The alulations of the
energy loss near edge strutures have been performed with the WIEN97 ode aording
to the formalism of M. Nelhiebel et al. [180℄. In this part of the Chapter, we present
spetra due to the arbon and nitrogen K-shell exitation (n=1, l=0) of various CNx

ompounds. Parameter settings have been used to simulate polyrystalline samples by
averaging over all possible inident-beam diretions (integral over 4�). Nonetheless, the
negleted anisotropy e�ets whih are mostly important for layered strutures should
only hange the intensity of the peaks but not their positions. The energy of the inident
eletrons was �xed to 200 KeV and the energy loss of the �rst edge to 285 and 400 eV
for arbon and nitrogen, respetively.

In order to probe our alulational method, diamond and graphite have also been
investigated. Their relative C K ELNES spetra are depited in Fig. 8.28 and the
positions of the most prominent peaks (labelled I to IV) are listed in Tab. 8.24. Peak
I in the C K edge of graphite orresponds to the eletroni transitions 1s ! ��. This
feature usually identi�es sp2-hybridised materials and onsequently it does not appear in
the diamond spetra. The peaks II-V are related to 1s ! �� transitions. A reasonable
orrespondene between our alulations and the experimental results has been found
in Tab. 8.24. Moreover, the omputed relative peak positions math better with the
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Phase Edge I II III IV V

Diamond C K Thesis - 0 5.3 12.9 -
MS approahy - 0 4.4 12.0 -

exp.y - 0 5.5 12.9 -
Graphite C K Thesis -6.4 0 4.6 10.0 14.3

MS approahy -4.9 0 2.5 6.6 10.3
exp.y -6.8 0 4.4 11.2 14.7

Table 8.24: Positions of peaks I-V in the spetra of Fig. 8.28. All the positions are saled
with respet to the main �� peak II. Values are in units of eV. (y) Values as ompiled in
Ref. [181℄.

experimental �nding than the Multiple Sattering (MS) approah [181℄.
The alulated plain and broadened spetra for di�erent CNx materials are shown

in Fig. 8.29 and 8.30 for the C and N K edges, respetively. The spetra for graphiti-
like C3N4 and C11N4 reveal mainly graphiti features (Fig. 8.29), whereas the three-
dimensional bl-C3N4 and �-C11N4 exhibit a loser similitude to the diamond spetra.
However, despite this general similarity the shape and the number of �� peaks relative to
the C11N4 edges di�er quite evidently from those alulated for the C3N4 stoihiometry.
Espeially in the region between 5 and 15 eV (in both edges) a di�erent harateristi
�ngerprint an be assigned to eah of the studied systems, opening thus the possibility of
identifying these model phases in thin-�lm samples via EELS tehnique. The partiular
sharp �� peak found at the beginning of the N edge of the graphiti-C11N4 (plain line
of Fig. 8.30) indiates the presene of a pronouned sp2 bonding harater. The main
ontributions to this feature are due to the N2 and N3 atoms onstituting the 12-enters
arbon-nitrogen rings.

8.3.7 Conluding remarks

The present investigation reports the study of the stability and hardness of two model
arbon nitride stoihiometries isoeletroni with diamond: CxN4, where x=3 and 11. In
the �rst part of this Setion it has been arried out the theoretial determination of the
equilibrium strutural parameters and ohesive energies of novel C11N4 phases. Calu-
lations have shown that the introdution of an extended arbon system, whih an be
of graphiti-like or diamond-like type, an represent an important way to inrement the
phase stability of arbon nitrides. Both layered and three-dimensional C11N4 materials
have been predited to have a ohesive energy larger than the orresponding isoeletroni
C3N4. This result has been ahieved using two di�erent omputational methods within
the DFT: US-PP and FP-LAPW. However, in spite of the inreased ohesive energy the
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Figure 8.30: Theoretial N K ELNES of various phases (FP-LAPW). As in Fig. 8.29
inequivalent atoms have been alulated separately and weighted in the present spetra.
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standard enthalpy of formation has been alulated for all the investigated C11N4 phases
to be positive and generally larger than those of the analogues C3N4 forms. Therefore,
from a simple thermodynami approah the synthesis of rystalline arbon nitrides with
higher arbon ontent should be less feasible than the well-known C3N4 stoihiometry.
However, if a sample with C11N4 omposition ould be realised by means of some type of
syntheti proess, a onsiderable ativation energy would be required to break the large
number of strong C-C and C-N bonds, thus making this substane thermodynamially
metastable at ambient onditions. Furthermore, even though the alulated enthalpy
di�erene between the stable graphiti-like forms of C3N4 and C11N4 seems to be large
enough (75-80 kJ/mol) to favour the synthesis of one stoihiometry over the other, amor-
phous samples will be probably often obtained upon trying to deposit any of the CNx

ompositions. This general onlusion has been drawn by looking at the small energy
separations found in between the �Ho

f;0's alulated for the whole set of CNx phases. It
is thus expeted that a mixture of di�erent phases suh as graphiti-like and other three-
dimensional networks will be always obtained simultaneously. Therefore, di�erent C11N4

and C3N4 forms with a very lose energy stability ould exist and their disrimination
would be thus nearly impossible at the experimental level. The possibility to have few
stable strutures whih ould be in dynamial equilibrium at room-temperature has also
been hypothesised in 2000 by �E. Sandr�e [182℄ for CNx (x=0.33) systems. So far as that is
onerned, it would be worthwhile to investigate di�erent fulleren-like phases to hek if
any larger inrease in the stability ould be found. Unfortunately, due to the high ost of
omputational time needed for suh an investigation we reserve this study for a possible
future projet.

A large part of this Setion has also been direted to the alulation of the indepen-
dent, non-zero elasti onstants from �rst-priniples. The analysis of the omplete set
of elasti moduli for the � phase shows that the C11N4 stoihiometry an lead to the
formation of very sti� materials. More generally, the inreasing of the arbon onen-
tration indues to a signi�ant improvement of the hardness of arbon nitrides, provided
that the same isoeletroni struture is kept in the model system. Furthermore, the
density of states have been analysed in order to gain insight into the hemial bonding
of phases with di�erent stoihiometries. A band gap of 2.4 eV has been alulated for
the three-dimensional � struture. Finally, the harateristi ELNES oordination �n-
gerprints have been reported for various CNx forms. The proposed spetra may be used
as a preious tool for the haraterisation and the identi�ation of novel arbon nitrides
phases in polymorphi samples.



Chapter 9

Boron Carbon Nitrides

9.1 Ternary BCN ompounds

The interest in the boron arbon nitrides with general omposition BxCyNz arose from
the diÆulty to obtain new materials for abrasives, heat sinks and protetive oating ap-
pliations. Ternary systems with a diamond-like struture in whih some of the arbon
atoms are replaed with nitrogen and boron are expeted to show the same interesting
properties found in diamond and ubi boron nitride, suh as hardness, wide band gap
and high melting points. As a onsequene their potential appliations ould be found
in several mehanial and eletroni devies [183, 17, 184℄. Moreover the low oxidation
resistane of diamond, whih is one of the most important drawbaks for its appliations,
might be improved in the boron-based hard materials. As a matter of fat diamond an
only be used at around 600 ÆC in air, while ubi boron nitride avoids the oxidation
up to 1100 ÆC [145, 185℄. The �rst evidene of a graphiti-like BCN ompound with
BC2N stoihiometry dates bak to the synthesis of Kouvetakis et al. [13, 14℄, where
hemial vapor deposition method was used with BCl3 and CH3CN as starting materi-
als. These layered strutures have been largely investigated both experimentally [13, 14℄
and theoretially [166, 186, 187, 188, 189, 190℄. Further investigations onerning highly
dense three-dimensional phases were arried out by Tateyama and Tsuneyuki [20℄ who
have shown the possibility to obtain ordered BC2N strutures diretly through ompres-
sion of the layered BC2N form. An elegant study of the eletroni properties along the
C2-BN pseudo-binary juntion has also been presented by W. R. L. Lambreht and B.
Segall [191, 192℄. Early theoretial alulations of the bulk [20℄ and shear [21, 22℄ moduli
have suggested that these ompounds should possess an intermediate hardness between
diamond and ubi boron nitride. At the experimental level several e�orts have been
made in order to modify the graphiti BC2N systems into hard three-dimensional phases
[183, 17, 184, 193, 194, 18, 19℄. Despite the use of high-pressure and high-temperature

98
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methods no ommon results were found in the last deade. Some researhers had prob-
lems with a ertain limited solubility [15, 16℄, while others laimed an evident segregation
in a mixture of diamond and -BN [17, 18, 19℄. However, very reently a promising work
of L. Solozhenko et al. [6℄ has been published on the same subjet. These authors have
shown results that seem to point out to a suessful synthesis of a ubi BC2N phase with
a lattie parameter of 3.642(2) �A at ambient onditions. Even though the interpretation
of the di�ration patterns has led the authors to the onlusion of a spae group between
Fd-3m and F-43m, the atomi struture has not yet been properly de�ned. Therefore, it
is important to use three-dimensional BC2N models to provide insight on the unertain
experimental results. That is, to help the interpretation of the experimental �nding via
a detailed study of the hemial bonding implied in highly dense boron arbon nitrides.

In this Chapter the investigation has been foalised on the determination of the
stability and the hardness of novel hypothetial BC2N strutures obtained from the
relaxation of the substituted diamond. What is required is to �nd a system, like diamond,
where the sp3 bonds form strong and uniform three-dimensional frameworks. To disover
the existene of new ultra-hard phases the substitution of some of the arbon atoms
with boron and nitrogen has been performed in two di�erent diamond forms: ubi and
hexagonal. The number of substituted arbon was �xed in order to get isoeletroni
heterodiamond BC2N phases. After the arbon replaement a full geometry relaxation
was performed with a �rst-priniple pseudo-potential method to �nd the fundamental
eletroni ground state. The obtained hypothetial ompounds are expeted to be more
thermally and hemially (i.e. versus oxidation) stable than diamond and harder than
ubi boron nitride. This possibility makes them the most interesting lass of materials
apable to supersede the expensive diamond in various appliations.

The Chapter has been organised as follows: �rst of all we eluidate the building
strategy adopted to reate novel three-dimensional BC2N models. Seondly, the relative
stability between di�erent phases is qualitatively disussed from a hemial bonding
point of view and the mehanial properties are studied via bulk and elasti moduli. In
partiular, the hardness of the solid was analysed by measuring the resistane of the
material upon both volumetri (B) and shape (G) hanges. The major di�erene is in
the fat that B requires variations in bond distanes only, while G depends mainly on
the hanges in bond angles. Density of states, band strutures and eletron-energy-loss-
spetrosopy spetra are also presented.
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9.2 Setting up novel three-dimensional BC2N phases

9.2.1 Cubi and hexagonal diamond

Cubi diamond and lonsdaleite1 (sometimes alled \hexagonal diamond") are both rys-
talline forms of pure arbon (Tab. 9.1), where all the atoms are tetrahedrally bonded
(sp3-type). Their unit ell struture is shown in Fig. 9.1 and Fig. 9.2 for diamond and
lonsdaleite, respetively. These two strutures are related to eah other as the spha-

Figure 9.1: Unit ell of ubi diamond. This struture was �rst determined in 1913 by
W. H. and W. L. Bragg [195℄. That was also the �rst time that the struture of an
element was determined by the use of X-ray di�ration [196℄.

lerite with the wurzite. The f111g planes on the diamond struture and f001g planes in
lonsdaleite are idential; they are made of pukered hexagonal rings with a hair-form.

1It is a rare hexagonal polymorph of diamond, believed to have formed when meteori graphite falls to

earth. When this happened, great heat and stress transformed the graphite into diamond, but it retained

graphite's hexagonal rystal lattie. Lonsdaleite is urrently found only in the famous Barringer Crater

(also known as meteor rater) in Arizona.
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Figure 9.2: Unit ell of lonsdaleite (hexagonal polymorph of diamond).

The di�erene between these two strutures is in the staking of these planes. Diamond
shows a staggered on�guration of the C-C seond-neighbour bonds with a hair-form
on�guration of the pukered hexagonal rings, while lonsdaleite shows an elipsed on-
�guration with a boat-form (see Ref. [8℄ for a detailed disussion). The slightly higher
energy of these elipsed lonsdaleite arbons auses its struture to be slightly less stable
than that of diamond.

The basi idea behind the theoretial work presented in this Chapter starts from the
fat that an introdution of the B and N atoms in the above diamond strutures should,
in priniple, lead to the formation of new systems with large hardness and an inreased
oxidation resistane. It is beause of this great expetation, that a major portion of the
work has been direted to the understanding of the properties related to the BC2N model
phases. The following subsetions show the riteria applied in replaing the arbon atoms
in both ubi and hexagonal diamond phases.

9.2.2 Carbon substitution

Starting from the ubi form of diamond we have replaed four of the eight arbon
positions with two nitrogen and two boron atoms. Two di�erent ways of replaing the
arbon atoms are shown in Tab. 9.2. Suessively, the lattie vetors and atom positions
were fully optimised with the US-PP/LDA method to obtain the BC2N ground state.
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Property Diamond Lonsdaleite

Crystal system ubi hexagonal
Spae group Fd3m (227) P63/mm (194)

Atoms per unit ell 8 4
Positions of atoms (0, 0, 0), (1

2
; 1
2
; 0) (0; 0; 0); (0; 0; 3

8
)

(0; 1
2
; 1
2
); (1

2
; 0; 1

2
) (1

3
; 2
3
; 1
2
); (1

3
; 2
3
; 7
8
)

(1
4
; 1
4
; 1
4
); (3

4
; 3
4
; 1
4
)

(1
4
; 3
4
; 3
4
); (3

4
; 1
4
; 3
4
)

Cell onstants a=3.57 a=2.52; =4.12

Table 9.1: Crystal struture data for ubi and hexagonal diamond. Cell onstants values
are expressed in unit of �A.

Atom positions Diamond I-BC2N II-BC2N

(0, 0, 0) C C B
(1
2
, 1
2
, 0) C C B

(0, 1
2
, 1
2
) C N C

(1
2
, 0, 1

2
) C N C

(1
4
, 1
4
, 1
4
) C B C

(3
4
, 3
4
, 1
4
) C C C

(1
4
, 3
4
, 3
4
) C C N

(3
4
, 1
4
, 3
4
) C B N

Table 9.2: Substitution of the arbon atoms in the f diamond.

We have expliitly hosen to start from a primitive diamond system with eight atomi
positions per unit ell so that no symmetry onditions are imposed and all the atoms in
the ell are free to optimise independently. In the above substitution proess we have
applied the onsideration made in 1997 by Tateyama et al. [20℄. He disovered that the
bond ounting rule, i.e. maximum number of C-C and B-N bonds, found in the layered
strutures is also valid for heterodiamond BC2N. In partiular, it has been predited that
the most stable BC2N strutures have no B-B or N-N bonds and maximise the number
of C-C and B-N onnetions with C-B disfavoured. It has also been proposed that the
phase with alternate -C-C- and -B-N- hains or rings is the most stable one. Following
these suggestions it has been found that the arbon atom positions as substituted in Tab.
9.2 are the best hoie to avoid the formation of low energeti bonds. A dense three-
dimensional orthorhombi phase is proposed by substituting four arbon atoms with two
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Property I-BC2N II-BC2N III-BC2N

System orthorhombi orthorhombi trigonal
Spae group P2221 (17) Pmm2 (25) P3m1 (156)
Atoms/ell 8 4 4

x,y,z N(0:258; 0:000; 0:000) N(0:500; 0:500; 0:380) N(0:000; 0:000; 0:571)
B(0:000; 0:748; 0:250) B(0:500; 0:000; 0:124) B(0:333; 0:667; 0:441)
C1(0:742; 0:500; 0:000) C1(0:000; 0:500; 0:631) C1(0:000; 0:000; 0:934)
C2(0:500; 0:255; 0:250) C2(0:000; 0:000; 0:866) C2(0:333; 0:667; 0:054)

Cell onst. a=3.5536 a=2.5280 a=b=2.4955
b=3.5986 b=2.5024
=3.5528 =3.5871 =4.1923

�, �,  90, 90, 90 90, 90, 90 90, 90, 120
dN�C 1.539 1.552 1.522
dN�B 1.565 1.549 1.540
dB�C 1.558 1.569 1.625
dC�C 1.519 1.509 1.525

Table 9.3: Optimised parameters for heterodiamond BC2N strutures. Cell onstants
and bond distanes are given in unit of �A.

nitrogen at the positions (0, 1
2
, 1
2
) and (1

2
, 0, 1

2
) and two boron at (1

4
, 1
4
, 1
4
) and (3

4
, 1
4
,

3
4
). The optimisation of the lattie parameters and the ions relaxation were performed

iteratively until the minimum on the total energy was met (see Tab. 9.3). This system
is here alled I-BC2N and onsists of an orthorhombi rystal where arbon, nitrogen
and boron atoms are tetrahedrally oordinated (Fig. 9.3). The rystal motif is made of
C4NB, C3N2B, C3B2N and C2B2N2 rings with a hair form on�guration. Following
the same proedure another orthorhombi phase alled II-BC2N (see Fig. 9.4 and Tab.
9.3) was found starting from the ubi diamond. This struture is obtained by replaing
the arbon atoms in positions (0, 0, 0) and (1

2
, 1

2
, 0) with boron and in (1

4
, 3

4
, 3

4
) and

(3
4
, 1

4
, 3

4
) with nitrogen. The phase II-BC2N is haraterised by the same hexagonal

rings with a hair form on�guration as in I-BC2N but a di�erent atom type disposition
is used to build-up the rings. However, in both phases eah eletron rih nitrogen is
bonded with two eletron poor boron atoms and two arbons in order to reah the fourth
o-ordination. In the same way the boron atoms are onneted with two nitrogens and
two arbons. The struture is then ompleted with arbon atoms tetra-oordinated with
two nitrogen (or two borons) and two arbon atoms eah.

To individuate new ternary B-C-N phases, the same above proedure has been applied
to the lonsdaleite, where two of the four arbon positions have been substituted with one
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Figure 9.3: Crystal struture of the orthorhombi I-BC2N. Carbon, nitrogen and boron
atoms are depited in blak, white and grey, respetively.

boron and one nitrogen (Tab. 9.4). In partiular, a trigonal struture alled III-BC2N
(Fig. 9.5) has been found when two arbon atoms in the positions (0, 0, 3

8
) and (1

3
, 2
3
, 1
2
)

were replaed with nitrogen and boron, respetively. Subsequent geometry optimisation
(Tab. 9.3) brings the phase in an energy minimum state where the boron atoms are
four o-ordinated with three nitrogens and one arbon. Nitrogen atoms show a fourth
o-ordination with three borons and one arbon while the arbon atoms are tetrahedrally
bonded to one boron and three other arbons. This phase is built-up with C6 and B3N3

rings onneted with eah other via C-B and C-N bonds. Aording to the bond ounting
rule, this phase ontains C-C and B-N bonds and no B-B or N-N bonds are present.

Atom Positions Lonsdaleite III-BC2N

(0, 0, 0) C C
(0, 0, 3

8
) C N

(1
3
, 2
3
, 1
2
) C B

(1
3
, 2
3
, 7
8
) C C

Table 9.4: Substitution of the arbon atoms in the hexagonal diamond.
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Figure 9.4: Crystal struture of the orthorhombi II-BC2N.

9.3 Computational details

Calulations of the ground state geometries were arried out in the framework of density
funtional theory in its loal density approximation to the eletron exhange and or-
relation within the VASP pakage. The interations between the ions and the eletrons
are desribed by using ultra-soft Vanderbilt pseudo-potential and the eletron-eletron
interation is treated within the LDA by the Ceperley-Alder exhange-orrelation poten-
tial. In our omputational sheme the onjugate-gradient algorithm was used to relax
the atom positions of the BC2N systems into their ground states. The strutural pa-
rameters were onsidered to be fully relaxed when fores on the atoms were less than
0.02 eV/�A and all stress omponents were less than 0.003 eV/�A3. The alulations were
performed by using an energy ut-o� of 434.8 eV for the plane wave basis set. The tetra-
hedron method with Bl�ohl orretions was applied for both geometry relaxation and
total energy alulations. Brillouin-zone integrals were approximated using the speial
k-point sampling of Monkhorst and Pak. Density of states, band strutures and energy
loss near edge struture spetra were performed on the optimised US-PP strutures by
using the aurate full-potential linearized augmented plane wave method (WIEN97 pak-
age). For the exhange-orrelation potential the LDA approximation has been used as
parameterised by Perdew and Wang [130℄. The maximum spherial harmoni l value of
partial waves inside the atomi spheres was set equal to 10. A loal s-orbital was added



106 Chapter 9: Boron Carbon Nitrides

Figure 9.5: Crystal struture of the trigonal III-BC2N phase.

to the LAPWs in order to avoid the presene of unphysial states (e.g. ghost bands) and
to improve the exibility of the basis set. FP-LAPW alulations were ompleted for
the I-BC2N at approximately 106 plane waves per atom (pws/atom) and 91 inequivalent
k-points with a 7�7�7 k-mesh in the BZ, whilst for the II-BC2N 119 pws/atom and 150
inequivalent k-points (8�8�6) were suÆient enough to ahieve the desired auray.
Finally, 101 pws/atom and 95 inequivalent k-points (9�9�5) were employed to desribe
the trigonal III-BC2N phase. For all the investigated model systems, the di�erene in
total energies were onverged to below 0.002 eV with respet to k-point integration and
kineti energy ut-o�. For arbon, nitrogen and boron the same muÆn-tin radius of 1.40
�A was kept in all the analysed strutures.

9.4 BC2N phases and their relative stability

From the performed alulations both methods, FP-LAPW and US-PP, predit for the
III-BC2N to be the most stable struture (Tab. 9.5). With the use of the US-PP method
this phase is estimated to be around 0.24 eV/atom more stable than I and II and lose
to the energy of the layered BC2N. Calulations omputed with the FP-LAPW tend to
emphasise the energy di�erenes between the various BC2N strutures. Nevertheless, the
energy trend agrees quite well with the US-PP estimations (see Tab. 9.6). Aording to
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Struture Vo Eoh: B B
0

ubi diamond 5.488 -10.15800 463.68 3.68
(exp.)[8℄ (5.673) (443) (3.67)

hexagonal diamond 5.508 -10.12760 456.03 3.68
(exp.)[196℄ (5.61-5.67)

-BN 5.705 -9.74120 396.60 3.61
(exp.)[197℄ (5.930) (369-382) (4.0-4.5)

h-BN 8.853 -9.69480 248.76 3.94
(exp.)[198℄ (9.042)

graphiti-BC2N 8.403 -9.69482 276.99 3.43
I-BC2N 5.679 -9.51096 459.41 2.11
II-BC2N 5.673 -9.51404 408.95 3.54
III-BC2N 5.653 -9.75195 420.13 3.40

Table 9.5: Strutural and ohesive properties of various phases: atomi volume Vo (�A
3),

bulk modulus B (GPa), pressure derivatives B
0

and ohesive energy Eoh: (eV/atom).
The latter values have been obtained by taking the di�erene between the total energy
of the solids and the ground-state energies of the spherial non spin-polarised atoms. No
orretion for zero-point motion has been made.

the bond ounting rule, phase III ontains a large number of C-C and B-N bonds and
no B-B or N-N onnetions are present. The larger stability found for this phase an
be addressed to the presene of C6 and B3N3 rings onneted to eah other by C-B and
C-N bonds. As already predited by Tateyama et al. [20℄, phases made up of alternate
-C-C- and -B-N- rings show a signi�ant inreasing of the stability. As a matter of fat
the lowering in the ohesive energy found for the phase I-BC2N an be attributed to the
fat that the pure -C-C- and -B-N- hains are repetitively broken by the presene of B
and C atoms (refer to the zig-zag ion hains going from left to right of Fig. 9.3). The
US-PP energy urves of the phases I, II and III are shown in Fig. 9.6 together with
some of the starting materials. All the presented systems have previously been optimised
with the same method of alulation. For simpliity, the graphiti-BC2N phase has been
taken from the semi-onduting model (II) for a BC2N monolayer proposed by Liu,
Wentzovith and Cohen [166℄. Assuming the graphite-like staking AB of these sheets
(Fig. 9.7), an orthorhombi rystal with an Ama2 (40) spae group has been found after
having performed the full geometry relaxation. The optimised strutural parameters have
been used to represent the graphiti-BC2N model phase (Tab. 9.7). The h-BN refers to
the layered hexagonal BN struture (graphite-like form) with four atoms in the unit ell
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BC2N struture �EUS�PP �EFP�LAPW
graphiti 0.0 0.0

I +0.184 +0.202
II +0.181 +0.197
III -0.057 -0.073

Table 9.6: Calulated energy di�erene, �E (eV/atom), for various phases relative to
the graphiti-BC2N form.

[198℄2. This system exhibits an AA
0

AA
0

... staking sequene with boron atoms in layer
A plaed diretly below the nitrogen atoms in layer A' (see Fig. 9.8). The diamond-like
form of BN (-BN) has a zin blende struture with spae group F43m (Fig. 9.9). This
ubi form shows two atoms�ell�1 and a lattie onstant of 3.615 �A [2℄3.

From the energy-volume urves it is lear that the phases I- and II-BC2N ould
only be metastable forms of the heterodiamond BC2N system while the III-BC2N is in
priniple expeted to be in ompetition with the formation of the graphiti-like model.
Sine the energy urves of both I- and II-BC2N lay at about 0.65 and 0.23 eV/atom
(fr. Tab. 9.5 and Fig. 9.6), respetively above the urves of diamond and -BN,
a segregation in a mixture of the starting materials is expeted during a hypothetial
attempt of preparation. Starting from the graphiti-BC2N a transition pressure of � 65
GPa has been predited in order to obtain the formation of the phases I- and II-BC2N
(Fig. 9.10). On the ontrary the energy urve minimum relative to the III-BC2N appears
very lose to that of the ubi and hexagonal BN. This phase is also slightly more stable
(0.057 eV/atom) than the layered BC2N form. Therefore, in all probability it ould
be synthesised over the phases I and II, and a ompetition with the formation of the
graphiti-BC2N is also very probable to happen.

9.4.1 Enthalpy of formation

From the values of the ohesive energies it is possible to estimate the standard enthalpy for
the formation reation of a three-dimensional BC2N phase as in Eq. 9.1. The energies
have been omputed with the aurate FP-LAPW method as a funtion of di�erent
exhange-orrelation funtionals (values are listed in Tabs. 9.8 and 8.2).

2C() +B() +
1

2
N2(g) ! BC2N() (9.1)

2Spae group: P6m2 (187). Optimised ell parameters: a=b=2.481 �A, =6.643 �A, �=�=90Æ and

=120Æ. Equilibrium atom positions: B1(0,0,
1

2
), B2(

1

3
, 2
3
,0), N1(0,0,0), N2(

1

3
, 2
3
, 1
2
)

3Atomi positions: B(0,0,0) and N( 1
4
, 1
4
, 1
4
). Optimised lattie onstant: a=3.570 �A
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Figure 9.6: Cohesive energies (eV/atom) as a funtion of the atomi volume (�A3/atom)
for the starting materials and BC2N strutures. The urves were generated with the
US-PP/LDA method.

For the alulation of the �Ho
f it has been assumed that diamond4 and moleular nitrogen

are the most stable forms (at 25 ÆC and 1 atm) of arbon and nitrogen, respetively. For
Boron, the phase �12-boron (�12-B) has been used as referene material. In spite of
the many di�erent allotropes of solid boron [196℄, we onsider here only the simplest
form, the �-rhombohedral phase (metastable at ambient onditions), whih shows one
12-atom iosahedron per primitive ell 5. The alulated standard molar enthalpy hange
of formation at 0 K (�Ho

f;0) ranges for the phase III between -208 (LDA) and -136/-
129 kJ/mol (PBE/PW91) depending on the employed exhange-orrelation funtional

4As stated in Se. 8.2.3 alulations show small di�erenes in the ohesive energies of diamond and

graphite. Therefore, using diamond as a starting material instead of graphite brings only a slight hanging

in the magnitude of the resulting enthalpy of formation.
5Details on the strutural data for �12-B are given in Ref. [196℄. The rystal is rhombohedral with

a=5.057 �A , �=58.06Æ and the boron atoms loated at �(xxz),�(xzx) and �(zxx). For the six B(1)

atoms, x=0.0104 and z=-0.3427 while for the six B(2) atoms, x=0.2206 and z=-0.3677.
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Figure 9.7: Crystal struture of the orthorhombi graphiti-BC2N model phase.

(see Tab. 9.9). Using the ohesive energies of graphite and graphiti-BC2N, alulation
suggest an enthalpy of formation of the order of -180, -82 and -83 kJ/mol for LDA, PBE
and PW91, respetively. The quality of these estimations has been veri�ed when trying
to reprodue the heat of formation of ubi boron nitride (Eq. 9.2).

B() +
1

2
N2(g) ! BN() (9.2)

Using the GGA approah it has been omputed a �Ho
f;0 of -240.3 (PBE) and -242.7

kJ/mol (PW91), whih ompares reasonably well with the experimental data: �Ho
f;298=-

254.4 [199℄ and -266.9�2.2 kJ/mol [200℄. On the other hand, the LDA alulation gives
an enthalpy of formation sensibly larger than the experimental value with a magnitude
of -315.0 kJ/mol.

Therefore, after having probed the employed alulational sheme on -BN, it is possi-
ble to onlude that results from PBE and PW91 should be aurates enough to indiate
the phase III of BC2N as an exeedingly stable substane with a formation reation largely
favoured (exothermi) with respet to those of the C3N4 and C11N4 (fr. with Se. 8.2.3
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Property graphiti-BC2N

Crystal system Orthorhombi
Spae group Ama2 (40)

Atoms/unit ell 16
Atom type Coordinates (x, y, z)

C1 (0.2500, 0.8333, 0.9378)
C2 (0.2500, 0.2500, 0.6875)
C3 (0.2500, 0.2500, 0.1875)
C4 (0.2500, 0.3335, 0.9380)
B1 (0.2500, 0.0000, 0.9375)
B2 (0.2500, 0.0000, 0.4375)
N1 (0.2500, 0.0833, 0.6878)
N2 (0.2500, 0.0835, 0.1880)

Cell onstants (�A) a=6.819; b=8.591; =4.860
�, �,  (Æ) 90, 90, 90

Table 9.7: Optimised parameters for the graphiti-BC2N model phase.

in p. 48 and Se. 8.3.4 in p. 81). The synthesis and haraterisation of novel hard BC2N
materials seems to be thus more promising and feasible than CNx samples. As a matter
of fat, the reently announed preparation of a stable and rystalline ubi-BC2N phase
[6℄ ould be interpreted in terms of the above thermodynami outome.

Moreover, the estimation of the enthalpy for the formation reation of a sp3-bonded
BC2N phase as in Eq. 9.3 suggests that a hypothetial synthesis route to form BC2N
from -BN and diamond would require the overoming of a positive enthalpy of formation
of about 108 kJ/mol for the phase III within the loal density approximation (Tab. 9.10).

�BN() + 2C() ! BC2N() (9.3)

Looking at the magnitudes of the omputed �Hf;0's and negleting all the kineti onsid-
erations, whih might however play an important rule in the synthesis of BCN materials,
the phase III of BC2N will be probably results metastable with respet to a segregation
into the end members (i.e. -BN and diamond).

9.4.2 Disussion of the results

One might expet that ompounds between BN and C would have a stability lower than
diamond but at least lose to that of -BN. This is reasonably true when substitution
leads to systems within whih B-N bonds are maximised and favoured over the B-C and
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Figure 9.8: Crystal struture of the h-BN.

N-C onnetions. The presented orthorhombi BC2N rystals show N atoms oordinated
with two B and two C, whilst the B atoms are surrounded by two N and two C as
shown in Fig. 9.11. Suh a kind of on�guration brings two N-C bonds around eah N
and two B-C bonds around eah B. Compared to the -BN phase we have here replaed
four strong B-N onnetions with four weaker bonds (i.e. 2 N-C and 2 B-C)6. Even
though robust C-C interations are introdued in the system, they are not suÆient
enough to ompensate the loss of two B-N bonds at eah N and B sites. Moreover, the
C-C interations, whih usually have large bond energies (values are lose to that of
B-N from experimental standard formation enthalpy [202℄), are weakened with respet
to those found in diamond (pure ovalent system) beause of the presene of polarised

-
Æ+

C -
Æ�

C - bonds. The ovalent harater is thus redued due to the presene of eletron rih
(N) and eletron poor (B) neighbouring atoms. This e�et is learly shown in Fig. 9.12.

6There are six di�erent possible types of hemial bonds in BC2N and their bond energies an be

estimated from experimental standard formation enthalpy [202℄. The estimated bond energies of C-C,

B-C, N-C, B-N, B-B and N-N are 3.71, 2.59, 2.83, 4.00, 2.32 and 2.11 eV, respetively.
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Figure 9.9: Unit ell of the -BN.

The overall outome aounts for the dereasing of the stability of the two orthorhombi
phases with respet to the -BN system. As a matter of fat, the alulated US-PP/LDA
ohesive energies relative to the two BC2N systems are smaller than that of -BN and
diamond. The same energy trend has also been obtained with the FP-LAPW/LDA
alulational sheme. Another important thing that has to be noted is the fat that
the presented orthorhombi phases have shown a very similar energy stability. This is
not surprising sine the bonding on�guration around the B and N sites is equivalent
in both ases. Suh tendeny learly reets the above piture where the loal hemial
onnetions are assumed to play the most important role in aounting for the relative
stability of sp3-bonded boron arbon nitrides.

Nonetheless, it is worthwhile to stress that when performing arbon substitution in the
hexagonal diamond it beomes possible to design BC2N materials, suh as the trigonal
III-BC2N model system, with only one C atom at eah B and N sites. As one might
expet the phase stability an be here inreased leading to a ohesive energy approahing
that of -BN. These phases represent the highest level of stability reahable with a three-
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Figure 9.10: Energy versus pressure for di�erent BC2N phases (US-PP).

dimensional model in the BC2N stoihiometry. This upper limit lies very lose to the
ohesive energy of -BN but it annot approah that of diamond due to the restrition
imposed by the bonding ounting rule.

9.5 Theoretial estimation of hardness

Prima faie, we briey desribe the proedure used to alulate the omplete set of elasti
onstants for the investigated phases. In the orthorhombi BC2N models (I and II) there
are nine-independent elasti onstants, namely 11, 22, 33, 44, 55, 66, 12, 13 and 23

[171℄. The values of 11, 22, 33, 44, 55 and 66 an be diretly dedued from the �tting
of the energy vs. strain, while 12, 13 and 23 are found by saling the �tting parameter
with the already alulated 11, 22 and 33 (see Chapter 8, Se. 8.3.5, p. 83). For the
trigonal phase (III-BC2N), the six-independent elasti onstants, 11, 12, 13, 14, 33 and
44 [34℄ an be evaluated by applying the strains listed in Tab. 9.11 to the equilibrium
lattie and determine the resulting hange in the total energy. For both orthorhombi and
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Figure 9.11: Idealised hemial environment around the B/N site in -BN and various
BC2N phases. Part (a) of the sheme refers to the orthorhombi phases (I and II) while,
part (b) onerns the loal hemial bonding of the phase III.
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Eoh: �12-B -BN h-BN I II III graphiti

LDA -7.20, -7.40 [137℄ -8.07 -7.99 -7.94 -7.95 -8.22 -8.15
PBE -6.43 -7.03 -6.93 -6.87 -6.88 -7.17 -7.10
PW91 -6.45 -7.05 -6.93 -6.88 -6.90 -7.15 -7.10
exp. -5.90 [201℄ -6.60 [67℄ - - - - -

Table 9.8: Calulated ohesive energies (Eoh: in eV/atom) for various BC2N phases and
some of the starting materials as a funtion of di�erent exhange-orrelation funtionals.

�Ho
f;0 (kJ/mol)

method I II III graphiti

LDA -99 -103 -208 -180 (-180)
PBE -20 -24 -136 -109 (-82)
PW91 -25 -32 -129 -110 (-83)

Table 9.9: Calulated standard enthalpy of formation. Values in parenthesis orrespond
to the formation energy of graphiti-BC2N when graphite is taken as a starting material.

trigonal symmetries, small strains have been applied (Æ = �0:02n; n = 0�3) to avoid the
inuene of higher order terms on the alulated elasti onstants. The isotropi shear
modulus is then alulated for the orthorhombi phases by using the relation 8.17 as
written in Chapter 8, Se. 8.3.5, p. 83. For the trigonal BC2N, the value of the isotropi
G an be estimated from Eq. 3.7 (Chapter 3, Se. 3.1.2, p. 12), knowing that 11 = 22,
23 = 13, 44 = 55 and 66 =

1
2
(11 � 12). The isotropi trigonal shear modulus an be

�Hf;0 (kJ/mol)
method I II III graphiti

LDA 214 212 108 137 (120)
PBE 220 216 104 131 (138)
PW91 218 210 114 133 (137)

Table 9.10: Calulated enthalpy of formation for the reation: -BN()+2C()!BC2N().
Values in parenthesis orrespond to the formation enthalpy of the graphiti-BC2N when
the layered h-BN and graphite are used as reatants.
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Figure 9.12: Valene eletron density map showing the polarisation of the C-C bonds in
I-BC2N.

�nally expressed as in the following:

Gtrig: =
1

15
(
7

2
11 �

5

2
12 + 33 � 213 + 644) (9.4)

The omplete set of elasti onstants are shown in Tab. 9.12 together with the related
G values. The alulated isotropi shear moduli for the proposed BC2N phases are in
between the values of diamond and -BN. We estimate for the phases I, II and III values
of 482.0 GPa, 461.9 GPa and 471.5 GPa respetively, while for diamond and -BN 558.5
GPa and 425.9 GPa. By this it is implied that, in the substituted diamond a lear
hardening of the system is found with respet to the ubi boron nitride. The alulated
bulk moduli on�rm the same trend, where the magnitudes of B are found in between
those of the referene materials (Tab. 9.5). The only di�erene to be noted is that the
bulk modulus estimates the hardness of the BC2N rystals to be muh loser to that
of diamond than does the shear modulus. This general behaviour an be assigned to
the di�erent intrinsi harateristis that are distinguishing one modulus from the other.
However, when onsidering the omputational sheme used for the alulation of the
ij onstants, it is important to observe that errors an be easily aumulated in the
evaluation of the total energies and in the �tting of the various energy urves. The
introdution of arbitrary deformations of the unit ell followed by the alulation of the
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Strain Parameters �E=Vo

1 Æ11 = Æ22 = �1
2
Æ33 = Æ [1

4
(11 + 12)� 13 +

1
2
33℄Æ

2

2 Æ11 = Æ22 = Æ33 = Æ (11 + 12 + 213 � 1
2
33)Æ

2

3 2Æ23 = Æ 1
2
44Æ

2

4 2Æ12 = Æ 1
2
(11 � 12)Æ

2

5 2Æ12 = 2Æ13 = Æ [14 +
1
2
44 +

1
4
(11 � 12)℄Æ

2

6 Æ33 = Æ 1
2
33Æ

2

Table 9.11: Strains and elasti moduli for the trigonal phase. Unlisted Æij are set equal
to zero.

total energy, whih is many orders of magnitude larger than elasti energy, ould also
derease the auray of the omputed elasti moduli. However, despite the possibility
to pile up a large amount of errors, the extrapolated isotropi shear moduli result for
diamond and -BN in good agreement with the experimental values (Gexp:

diam:=535 GPa
[22℄, Gal:

diam:=558.5 GPa and Gexp:
�BN = 409 � 6 GPa [22℄, Gal:

�BN=425.9 GPa), proving
thus the quality of this alulational proedure. Therefore, the larger di�erene in the
shear moduli found in between the BC2N phases and diamond an be onsidered as an
index of an aentuated sensibility of G in desribing the mehanial hardness of the
materials.

Nonetheless, by using the estimated bulk and shear moduli the ratio B/G has been
omputed for the phase I to be of the order of 0.92, while for both phases II and III a
value of 0.90 has been found (Tab. 9.13). Sine these numbers are very similar to the
one alulated for the �-C11N4 system (fr. with data in Setion 8.3.5, p. 89), the two
lasses of materials should nearly display the same degree of brittleness. The omputed
Poisson's ratios are also very lose to the value of �-C11N4. The only di�erene has been
found in the alulated Young's moduli, for whih the BC2N phases have shown E values
that are in between bl-C3N4 and �-C11N4.

9.5.1 Mehanial stability

A neessary ondition for a rystal to be mehanially stable is that the elasti onstant
matrix, C, be positive de�nite (i.e. Born's riterion). For a trigonal symmetry the ij
matrix is represented in Eq. 9.5 and is positive de�nite if the determinants of the matries
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ij I-BC2N II-BC2N III-BC2N diamond lonsdaleite -BN

11 916.0 1003.0 925.3 1116.6 (1080)y 1448.0 824.6 (820)z

22 1064.2 1106.1 - - - -
33 939.0 938.1 942.8 - 1517.8 -
44 460.3 528.6 647.5 604.3 (557)y - 495.8 (480)z

55 524.0 496.5 - - 486.8 -
66 627.5 384.9 - - - -
12 120.2 27.1 320.3 137.2 (137)y -84.7 182.6 (190)z

13 199.6 153.4 95.6 - 1030.7 -
14 - - 25 - - -
23 205.3 168.5 - - - -
G 482.0 461.9 471.5 558.5 (535)x 510.5 425.9 (409�6)x

Values as ompiled in Ref. (y)=[8℄, (z)=[197℄ and (x)=[22℄.

Table 9.12: Independent elasti onstants, ij , and isotropi shear moduli for BC2N,
diamond, lonsdaleite and -BN. Values are expressed in units of GPa.

of suessive orders are all positive.

C =

0
BBBBBBB�

11 12 13 14 0 0
12 11 13 �14 0 0
13 13 33 0 0 0
14 �14 0 44 0 0
0 0 0 0 44 14

0 0 0 0 14 66

1
CCCCCCCA

(9.5)

These restritions translates into the following onditions:

11� j 12 j> 0; (11 + 12) 33 � 2213 > 0; (11 � 12) 44 � 2214 > 0: (9.6)

The alulated elasti onstants for the phase III-BC2N omply with the above relations
indiating the presene of a ertain mehanial stability for the trigonal model system.
In the same way the ij onstants alulated for the two orthorhombi models respet
the Born stability riteria for an orthorhombi symmetry (Eq. 8.22 in Chapter 8, Se.
8.3.5, p. 85). Therefore, even though they are not the most energetially favoured
forms for the BC2N stoihiometry, they ould be at least metastable materials. At the
moment it is important to highlight the fat that from an energeti point of view the
phase III appears as the most likely andidate for an heterodiamond BC2N system (see
Se. 9.4.2), though both shear and bulk moduli have shown a marked hardening for
the model phase I. However, all the proposed three-dimensional BC2N strutures ould
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I-BC2N II-BC2N III-BC2N -BN diamond

By 441.0 416.1 424.0 396.6 463.7
B/G 0.92 0.90 0.90 0.93 (0.90-0.93) 0.83
E 1060 1011 1032 941 (850�150)z 1196
� 0.099 0.095 0.094 0.105 (0.095-0.105) 0.070

Table 9.13: The above table shows the alulated B/G ratio, Young's modulus (GPa)
and Poisson's ratio of the studied BC2N phases. Diamond and -BN have also been
listed as referene materials. Numbers given within brakets orrespond to the use of the
experimental B and G values of Tabs. 9.5 and 9.12. yBulk modulus from the ombination
of the various elasti onstants. zMeasured elasti modulus from nanoindentations of
polyrystalline -BN bulk samples [203℄.

likely behave, if properly synthesised, as hard materials apable to substitute diamond
and -BN in di�erent mehanial appliations. Compared to diamond, they should also
show an inreased resistane towards oxidation at high temperatures due to the presene
of boron and nitrogen atoms.

9.6 Eletroni density of states and band struture

9.6.1 The orthorhombi phases (I and II)

The density of states of the phase I-BC2N (Fig. 9.13) shows a valene band mainly
dominated by the states of the atoms N, C1 and C2. From the partial omponents of
the DOS (not shown) it is found that the 2s orbitals of N dominate the bottom of the
VB. At energies between -10 and -5 eV the N 2p dominate the DOS, while the VB edge
onsists prinipally of 2p orbitals of the C1 atom. The bottom of the CB, just above
the Fermi level, is prinipally determined by the states of N and C2 (2p harater) with
some admixture of B states. The higher portion of the CB onsists mostly of 2p orbitals
of C1 with some mixing of the B and N states. From the band struture analysis (Fig.
9.14) a diret LDA band gap of 2.04 eV has been found at the � point. For the II-BC2N,
the ontribution of eah atom to the total DOS is shown in Fig. 9.15. The VB DOS an
be viewed as mainly omposed of 2p orbitals from N and C2 with some mixing of B and
C1 states, whilst the bottom of the CB is mostly derived from an admixture of the 2p
orbitals of N and C1. From the alulated band struture (Fig. 9.16) we obtain a diret
Eg of 1.87 eV at � (at whih the larger band dispersion is observed) and an indiret gap
of 1.69 eV with the top of the valene band being at the point � and the bottom of the
ondution band at S. It is worth to be noted that the alulated Eg, whih results from
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the interation of the ondution eletron waves with the ion ores of the rystal, are
probably underestimated due to the use of the LDA approximation. The total density
of states for the phases I- and II-BC2N at the equilibrium geometries are shown in Fig.
9.17. In partiular, the alulated DOS for the two orthorhombi phases are onfronted
with those of the ubi boron nitride and diamond. Looking at the total density of states
it appears evident, from the hanging in the shape of the VB, the presene of a di�erent
ovalent harater in the investigated BC2N phases. Diamond presents a ontinuous
valene band, pointing thus to the existene of a strong ovalent mixing between the
arbon states. On the other hand, -BN shows in the bottom of the VB a band gap of �
4 eV stating the presene of a ioni bonding ondition. In between these two limits lies
the BC2N system where the VB results largely indented but with no band gaps. Suh an
intermediate situation is due to the various bonding types established between elements
of group-III, -IV and -V: C-C (�Z=0), C-N (�Z=+1), B-C (�Z=-1) and B-N (�Z=0).

Our previous alulations, obtained by the same omputational method, yielded a
band gap of diamond and -BN of 4.11 eV and 4.36 eV 7, respetively. As an be learly
seen the Eg values found for the two BC2N strutures are nearly half of those alulated
for diamond and -BN. If we roughly onsider the C2(BN) phase as made of diamond
doped with 50 % of BN one might expet a band gap larger than that of diamond, that
is Eg > 4.11 eV. On the ontrary a sort of \band gap bowing" has been found aording
to W. R. L. Lambreht [191, 192℄ upon alloying -BN into diamond or vie versa. This
e�et an be here assigned to the shift of the arbon states (atoms C1 and C2) to higher
energy in the VB and to an analogue lowering of the states in the CB. As a matter of
fat the VB and CB edges are determined by the arbon atoms in both the two BC2N
systems. The shifting of the energies of the arbon states and the onsequent redution
of the band gap an be orrelated to a ertain weakening (i.e. polarization e�et) of
the arbon bonds in mixed diamond--BN rystals. The two heterodiamond phases are
predited to have a band gap whih is at the boundary between the semiondutors and
the insulators. Nevertheless, in the phase I the size of the energy gap should be wide
enough to avoid large thermal ondutivity at room temperature. By onsidering the
fration of eletrons exited aross the gap roughly of order e�Eg=2KbT and the value of
KbT at room temperature � 0.025 eV we an assume that essentially a small part of
eletrons are exited aross the gap (e�40:8 � 1:9 � 10�18). Wide band gap materials suh
as diamond, gallium nitride, silion arbide, aluminum nitride, and ubi boron nitride
are of great interest as they have potential for appliations in the eletronis, energy,
aerospae and defense industries.

7fr. with the experimental values of Ediam:
g =5.5 eV and E�BN

g =6.4 eV.
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9.6.2 The trigonal model struture (III-BC2N)

In this phase the small peak loated at the bottom of the VB is mainly derived from N
2s orbitals while at higher energy the N 2p states start to dominate the DOS (Fig. 9.18).
The VB edge is slightly less sharp than the one found in the orthorhombi phases and is
prinipally derived from the 2p orbitals of C2 with a ontribution of the N states with 2p
harater. The mixing of the B 2p orbitals with the other arbon and nitrogen states is
basially present only at the top of the VB. The lower region of the CB onsists mainly
of N and C1 2p orbitals, while in the upper region the N and C2 2p states dominate
the DOS. The two arbon atoms C1 and C2 are strongly ontributing to the edges of
the valene and ondution bands as in the previously desribed orthorhombi models.
However, in phase III the smearing out of both VB and CB edges is somehow indiative
of a ertain lowering of the eletron and hole e�etive masses. An indiret LDA energy
band gap of 1.79 eV in magnitude was alulated with the top of the valene band being
at the point � and the bottom of the ondution band at the point of symmetry K (Fig.
9.19).

9.7 Theoretial ELNES for BC2N model systems

Eletron energy loss spetrosopy is a tehnique widely used for the haraterisation of
boron arbon nitride samples beause of its great ability to di�erentiate the types of bond-
ing in a polymorphi material. As already mentioned in Setion 8.3.6, the harateristi
�ne struture at the beginning of the ore loss ionisation edges an provide important
information for light elements. The possibility to obtain peuliar �ngerprints for C, N
and B atoms opens to the opportunity to distinguish di�erent BC2N phases in omplex
systems. Sine the haraterisation of dense BC2N materials with a three-dimensional
network is heavily restrited by the problem of getting pure rystalline samples, a theo-
retial approah to simulate ELNES beomes important for providing referene spetra.

In this Setion we present the alulation of the energy loss near edge strutures by
using the formalism of M. Nelhiebel et al. [180℄ implemented within the FP-LAPW ode.
The spetra of arbon, nitrogen and boron K-shell exitation (n=1, l=0) are presented
for the proposed BC2N forms: I, II and III. Samples were simulated by averaging over
all possible inident-beam diretions sine the attention is here primarily onentrated
on the peak positions. Anisotropy e�ets whih usually hange the intensity of the peaks
but do not shift their positions, are thus negleted. The energy of the inident eletrons
was �xed to 200 KeV while the energy loss of the �rst edge was put to 190, 285 and 400
eV for boron, arbon and nitrogen, respetively. The spetra relative to the inequivalent
atom positions have been alulated separately and weighted to equal amounts in the
following Figures.

In order to test our alulational sheme, diamond and -BN have also been inves-
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tigated as representative of the BC2N starting materials. Their relative C, N and B
K ELNES spetra are presented and ommented. The position of the most prominent
peaks (labelled A to E) are listed in Tab. 9.14. The alulated relative peak positions

Peak position relative to peak A
Phase Edge A B C C' D E

Diamond C K Thesis 0 5.3 13.6y;12.9z - - -
MS[181℄ 0 4.4 12.0 - - -
exp.[204℄ 0 5.5 12.9 - - -

-BN B K Thesis 0 8.1 14.9 - - -
MS[181℄ 0 5.5 14.2 - - -
exp.[205℄ 0 6.9 16.9 - - -

N K Thesis 0 7.8 14.6 - - -
MS[181℄ 0 6.1 15.2 - - -
exp.[205℄ 0 6.4 14.8 - - -

I-BC2N C K Thesis 0 6.2 11.7 15.9 - -
N K " 0 6.1 11.4 - 16.0 -
B K " 0 4.8 10.1 - 15.0 -

II-BC2N C K Thesis 0 5.5 11.1 15.1 - -
N K " 0 4.8 10.8 - 15.3 -
B K " 0 4.2 10.3 - 14.3 -

III-BC2N C K Thesis 0 3.7 9.5 - 15.3 19.2
N K " 0 8.5 11.3 - 15.3 19.3
B K " 0 3.7 7.8 - 19.2 0

yThe energy position refers to the maximum of the peak.
zThe energy position refers to the averaged values of the two peaks extremes.

Table 9.14: Positions of the peaks A-E relative to the spetra shown in Figs. 9.20, 9.21
and 9.22. All the positions are saled with respet to the main �� peak A and refer to
the broadened spetra. Values are expressed in units of eV with an estimated error of �
0.25 eV.

show a good math with the experimental �nding and with the Multiple Sattering (MS)
approah [181℄. The largest error was found for the C peak in the alulation of the B
K ELNES of -BN. Both theoretial methods tend to underestimate its relative energy
position by more than 2 eV with respet to the experimental urve. Peaks A to C in the
C, N and B K edges of diamond and -BN orrespond to the eletroni transitions 1s !
��. This feature usually identi�es sp3-hybridised materials. Low energy peaks related to
1s ! �� transitions are absent indiating the presene of a perfet tetrahedrally bonded



9.7 Theoretial ELNES for BC2N model systems 131

system.

The alulated plain and broadened spetra for the proposed BC2N phases are shown
in Figs. 9.20, 9.21 and 9.22 for the C, N and B K edges, respetively. The same in-
strumental broadening, orresponding to a Gaussian funtion, has been utilised in all
the analysed spetra. In the C K ELNES the two orthorhombi phases show an evident
splitting of the diamond C peak into C and C', indiating the possibility of identifying
three-dimensional BC2N phases in the arbon edge. Furthermore, in the N and B K

ELNES the number of peaks vary with respet to the referene -BN. In partiular, in
the energy range between 5 and 15 eV two �� peaks were found instead of one of the
-BN. Their relative peak positions are shown in details in Tab. 9.14. These di�erent
features are expeted to be disovered in thin �lm samples for whih EELS results as an
important tehnique for bonding type haraterisation.

Phase III presents plain spetra whih are slightly more ompliated to interpret than
those of the two orthorhombi phases. Nonetheless, a harateristi feature, ommon
to all the three edges, an be individuated in the energy region between 5-17 eV. The
broadened spetra show three main �� peaks for the phase III of BC2N, whereas the other
phases possess only two. A very similar �� peak distribution should be thus exhibited in
all those BC2N samples for whih the same bonding type on�guration as in the phase
III is expeted.

9.7.1 The layered BC2N model system

Beside the systemati study desribed for the three-dimensional BC2N rystals, the band
struture approah to ELNES is here used further to analyse the near-edge �ne struture
of a layered BC2N system (graphiti-BC2N). Owing to the absene of struturally well-
haraterised graphiti-like BC2N referene samples, the results of suh an investigation
an serve as preliminary referene spetra for material haraterisation until reliable
ELNES beome available. The alulated near-edge struture of the K edges are displayed
in Figs. 9.23, 9.24 and 9.25. The estimated relative peak positions are shown in Tab.
9.15. All the three spetra exhibit a �� peak between 0-7 eV and a omplex �� feature
between 9 and 16 eV. The separation between the �� and �� features of graphiti-BC2N
are listed in Tab. 9.16 together with some of the experimental EELS results. Peak
separations seem to math better with the values of Kouvetakis, though the omparison
of the alulated values with those from experimental investigation is somehow aleatory.
As a matter of fat, most of the published values given in Tab. 9.16 refer to hybrid
boron-arbon-nitrogen phases with a stoihiometry \approahing" that of BC2N.

Contrary to what has previously been found with MS alulations [181℄, the band
struture method has shown some harateristi dissimilarities between K edges of h-
BN/graphite and layered BC2N whih would likely provide an unambiguous identi�ation
of the graphiti-BC2N phase. The alulated N K ELNES of BC2N exhibits two ��
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Peak position relative to peak B (eV)
Phase Edge A A' B C D E F G

Graphite C K Thesis -6.4 - 0 4.6 10.0 14.3 - -
MS[181℄ -4.9 - 0 2.5 6.6 10.3 - -
exp.[181℄ -6.8 - 0 4.4 11.2 14.7 - -

h-BN B K Thesis -6.3 - 0 4.3 8.5 15.5 - -
MS[181℄ -8.4 - 0 5.7 - 12.5 - -
exp.[181℄ -6.8 - 0 5.6 - 16.1 - -

N K Thesis -5.0 - 0 8.0 14.0 - - -
MS[181℄ -6.8 - 0 4.1 8.2 - - -
exp.[181℄ -6.1 - 0 7.2 17.6 - - -

graphiti-BC2N C K Thesis -6.9 - 0 2.5 4.1 6.8 13.1 15.8
N K " -7.2 -3.8 0 1.9 4.4 6.7 12.6 15.9
B K " -6.6 -3.9 0 2.3 4.4 11.6 16.1 -

Table 9.15: Positions of the peaks A-G relative to the spetra shown in Figs. 9.23, 9.24
and 9.25. All the energies are saled with respet to the �rst �� peak B and refer to the
broadened spetra. The estimated error is � 0.25 eV.

features, namely ��1 and ��2 , separated by 3.4 eV. The same doublet of �� peaks, but
with a lower intensity, was found lose to the onset of the �� peaks in the B K edge.
Moreover, the marked hanging found in the �� transition region of the C, N and B K

ELNES might be utilised as a distintive �ngerprint in the identi�ation of the graphiti-
BC2N. Therefore, in spite of the usually very large broadening found in the experimental
EELS spetra (i.e. ompared to the alulated one), the above peuliar harateristis,
together with the hanging in the peak positions (fr. Tab. 9.15 and Figs. 9.23, 9.24 and
9.25), should likely guarantee the spetrosopi disrimination of a pure and rystalline
layered BC2N sample over the K edges of h-BN and graphite.

9.8 Conlusions

In the present study it has been performed the replaement of some of the arbon atoms
with boron and nitrogen on the hexagonal and ubi diamond in order to design new
hard and possibly stable BC2N rystals. The substituted diamond strutures have been
relaxed with the US-PP method to obtain their fundamental ground states. Three novel
heterodiamond phases have been presented, namely I-, II- and III-BC2N, for whih the
hardness and the relative stability have been omputed. Strutures, suh as the trigonal
III-BC2N, that ontain alternate -C-C- and -B-N- rings and maximise the number of B-N
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��1 � ��1 Separation in eV
Author(s) Method Ref. B K C K N K

M. Mattesini et al. Band struture Thesis 6.6 6.9 7.2
Wibbelt et al. MS alulations [181℄ 8.5 7.5 5.5
Kouvetakis et al. exp. [13℄ 7.0 6.5 6.0
Weng-Sieh et al. exp. [206℄ 8.0 7.0 6.0
Sasaki et al. exp. [207℄ 6.0 7.5 5.5

Table 9.16: Values of the separation between the �rst �� and �� peaks (� 0.5 eV) for
the K edges of graphiti-BC2N.

bonds are predited to behave as some of the most stable forms of the three-dimensional
BC2N system. From the total energy alulations this phase results also in ompetition
with the formation of the two-dimensional layered form. The standard molar enthalpy
hange of formation has been omputed for the phase III to be exothermi and with a
magnitude of -208 (LDA), -136 (PBE) or -129 (PW91) kJ/mol, depending on the type
of the hosen exhange-orrelation funtional. This �nding indiates the possibility of
synthesising rystalline sp3-bonded BC2N samples at smoother temperature and pressure
onditions with respet to the deposition of arbon nitrides.

Furthermore, two model BC2N phases (I and II) formally derived by the arbon
substituted f diamond have been presented. Aording to the bond ounting rule these
orthorhombi rystals have been found to be metastable with respet to diamond and
ubi boron nitride. Total energy alulations predit for both strutures a ohesive
energy whih is slightly lower than that of -BN. This �nding has been interpreted by
onsidering the bonding on�guration around eah B and N sites (i.e. whih maximises
the B-N bonds) and the e�et of the C-C bond polarisation. In partiular, the latter
upshot is also believed to have been responsible for the shifting in the DOS of the arbon
states at higher and lower energies in the VB and CB, respetively. As a onsequene an
evident losing of the band gap has been found by going from diamond or -BN to the
isoeletroni BC2N stoihiometry. The alulated �Ho

f;0's for the model systems I and II
are still exothermi, however their values are at about 100 kJ/mol smaller than that of the
phase III. Nonetheless, all the investigated BC2N models have shown a thermodynami
stability signi�antly larger than the orresponding isoeletroni CNx ompounds.

The estimation of the hardness has been arried out by the alulation of the isotropi
shear modulus. Aording to Gerk [30℄ and Teter [22℄, a better orrelation with the
hardness of solids is expeted from the ombination of the inequivalent elasti onstants.
However, I have also alulated the bulk modulus whih has been onsidered for a long
time as the best preditor of hard materials. With the use of US-PP method, alulations
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suggest isotropi G values whih are about 13.2 (I-BC2N), 8.5 (II-BC2N) and 10.7 % (III-
BC2N) higher than that of -BN. That involves an obvious hardening of the system with
respet to the well known ubi boron nitride. The omputed bulk moduli on�rm the
same tendeny: B values are in between those of the starting materials. Aording to suh
a theoretial �nding, these ternary ompounds are all predited to be good andidates
for materials harder than -BN.

The density of states and band struture analysis have led to a band gap of 2.04, 1.69
and 1.79 eV for the phases I, II and III, respetively. Sine it is well-known that the LDA
approximation generally underestimates the experimental band gaps by as muh as 30
% the phase I an be tentatively lassi�ed as insulator.

The study of the eletron energy loss near edge strutures of C , N and B K ionisation
edges have also been simulated for the presented phases. An evident splitting of the ��

peak at around 20-25 eV has been found in the C K ELNES of the two orthorhombi
BC2N rystals with respet to diamond. Furthermore, the hanging of the number of
peaks in the region between 5 and 15 eV and the variation of the �ngerprints in the N and
B K edges may be utilised as an important guide in the experimental haraterisation
of the sp3-bonded BCN samples. For the trigonal system three �� peaks, ommon to all
the three edges, have been individuated in the region between 5-17 eV. Sine in the same
energy range the orthorhombi models have shown only a doublet, this feature an be
used to disriminate the phase III of BC2N from the others. Finally, referene spetra
have been alulated for the graphiti-BC2N in all the three di�erent edges. A doublet
made of �� peaks has been displayed in the N and B K ionisation edges just before the
onset of the �� peak. Owing to the presene of only one �� signal in the edges of the
referene materials (graphite and h-BN), an evident detetion of the layered BC2N phase
it is thus highly expeted from the use of the EELS tehnique.



Chapter 10

Summary and Outlook

10.1 Carbon Nitrides

Based on the results presented in Chapter 8 it has been suggested that pure rystalline
C3N4 systems are generally semiondutor materials with remarkable mehanial proper-
ties. However, very high temperature and high pressure reations are likely to be required
for their preparation in order to overome the alulated positive standard enthalpy of
formation. Moreover, the possibility to synthesise a pure arbon nitride sample with
C3N4 omposition should be generally hindered by the fat that di�erent model systems
have shown a very lose energy stability. Comparing, for example, the two graphiti-like
phases (i.e. hexagonal and orthorhombi) a small energy di�erene has been omputed
(� 5-6�10�4 eV/atom with FP-LAPW method), thus on�rming the diÆulty found at
the experimental level in disriminating single rystalline sp2-bonded forms. Moleular
alulations suggest that polymorphi samples ontaining both types of layered stru-
tures should possess two main 13C NMR signals spaed by approximately 15 ppm. This
result seems to be in very good agreement with the latest experimental �nding.

When onsidering the formation of substanes with C11N4 stoihiometry (this is the
subjet of the seond part of Chapter 8) alulations have shown that isoeletroni arbon
rih model systems possess larger ohesive energies and they are usually sti�er than
the analogue C3N4 ompounds. However, in spite of this general improvement of the
properties, the enthalpies for the formation reations have been evaluated to be positive
and most frequently larger than the analogue arbon poor phases. Furthermore, a very
similar �Ho

f;0 (4 kJ/mol of di�erene) has been omputed for the layered C11N4 form and

the sp3-bonded �-C3N4 system. It an be thus strongly suggested that polyphasi samples
will be often obtained upon trying to deposit arbon rih ompounds. In partiular, it
is quite likely that a mixture of di�erent forms, belonging to di�erent stoihiometries,
will always be ahieved simultaneously during the synthesis of arbon nitrides. However,

141
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suh a onlusion should be weighted with an aurate kineti investigation of the studied
model phases (fr. for example the ase of diamond and graphite).

The harateristi ELNES oordination �ngerprints have also been reported and anal-
ysed for the seleted C3N4 and C11N4 strutures. Theoretial spetra indiate the pos-
sibility to di�erentiate the various phases by looking at the hanging in the number and
position of peaks in both C and N K edges.

Despite many unsuessful attempts to produe single phase CNx materials it is
however worth to note that amorphous samples an still �nd important appliations in
a wide range of interesting �elds. The main ommerial appliation of arbon nitrides
is nowadays as protetive oating on hard diss and reorder heads. However, oatings
an also have a large potential appliation on medial area. The reovery of orthopaedi
substrates has in fat already been tested for joint arthroplasty in human implants. In
general, amorphous �lms an be used in all appliations where amorphous arbon �lms
are usually employed. Hene, despite the lak of pure rystalline samples the importane
of produing homogeneous and well haraterised thin-�lms arbon-based hard materials
should not be negleted.

10.2 Boron Carbon Nitrides

In Chapter 9 it has been omputed the investigation of the isoeletroni BC2N lass of
ompounds. Carbon atoms have been replaed with boron and nitrogen in the hexagonal
and ubi diamond in order to design novel three-dimensional ultra-hard boron arbon
nitrides. The struture alled III-BC2N has been predited to be one of the most stable
forms of the three-dimensional BC2N system. In partiular, its large ohesive energy
has been addressed to the large number of B-N bonds and to the presene of alternate
-C-C- and -B-N- rings. Furthermore, a detailed study of the unit ell response upon
volume and shape hanging has shown an evident hardening of the BC2N phases with
respet to the well-known ubi boron nitride. Consequently, by looking at the relative
energy stability and at the omputed elasti and bulk moduli, the phase III of BC2N
results, among the presented model phases, as the best andidate for replaing -BN or
diamond in various mehanial appliations. The standard molar enthalpy hange of the
formation reation has also been omputed for this phase to be largely exothermi (�
-133 kJ/mol1), thus pointing to the possibility of depositing BC2N rystalline forms at
relative low temperature and pressure onditions with respet to arbon nitrides.

Finally, referene ELNES spetra have been proposed for di�erent sp2- and sp3-
bonded model systems, providing the possibility to identify pure rystalline phases in
polymorphi samples.

1Averaged FP-LAPW/GGA values.
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10.3 Prospetive studies and \what's left"

In order to get a deeper insight into the subjet of arbon nitrides, the general trend
found in the stability, eletroni and mehanial properties should also be heked for
other isoeletroni ompounds. Model rystals suh as C5N4, C3N2, C7N4 (Fig. 10.1),
C9N4 et... have to be proposed and investigated to address further trends in CNx

materials. As mentioned in Setion 8.3.7 the possibility to have a larger inrement in the
stability must also be searhed in fulleren-like phases. In view of the latest experimental
outomes, nanotubes and nano�bers should also be onsidered as important forms for
both arbon nitrides and boron arbon nitrides. However, the synthesis and study of
suh nanotube-like ompounds should mostly onern the generation of novel lasses of
eletron �eld emitters rather than novel ultra-hard systems.

Figure 10.1: The three-dimensional C7N4 model system. Ongoing alulations seem to
indiate the same general tendeny found for the C3N4 and C11N4 ompositions.



Chapter 11

Conlusions

11.1 Nitrures de Carbone

Les r�esultats pr�esent�es au Chapitre 8 permettent de proposer de nouveaux syst�emes ristal-

lins de formulation C3N4 ayant des propri�et�es de semi-onduteurs et suseptibles de poss�eder

des arat�eristiques m�eaniques exeptionnelles. Cependant des onditions de tr�es hautes

temp�erature et de pression seraient requises pour leur pr�eparation si l'on veut surmonter les

enthalpies de formation standard positives qui les arat�erisent.

De plus, la possibilit�e de synth�etiser un �ehantillon pur de C3N4 serait diÆile ompte

tenu des faibles di��erenes d'�energies arat�erisant la stabilit�e des syst�emes mod�eles examin�es.

En e�et, la omparaison des deux phases graphitiques (i.e. hexagonale et orthorhombique)

montre une faible di��erene d'�energie de oh�esion, � 5-6�10�4 eV/atom (aluls pr�eis ave

la m�ethode FP-LAPW), e qui on�rme la diÆult�e �a l'�ehelle exp�erimentale de di��erenier

des phases �a hybridation sp2 dominante (strutures �a arat�ere bi-dimensionnelle (2D)).

Les aluls de r�esonane magn�etique nul�eaire (RMN) du 13C men�ees sur des lusters

mol�eulaires permettent de sugg�erer que les �ehantillons polymorphiques ontenant les deux

types de strutures �a arat�ere 2D dominant poss�edent deux signaux s�epar�es d'environ 15

ppm. Ce r�esultat semble être appuy�e par les derni�eres observations exp�erimentales.

Conernant la formation des phases de stoehiom�etrie plus rihe en arbone, C11N4 (objet

de la deuxi�eme partie du Chapitre 8), les aluls ont montr�e que les syst�emes mod�eles or-

respondants poss�edent de plus fortes �energies de oh�esion et se pr�esentent omme plus durs

que les analogues iso�eletroniques C3N4. N�eanmoins, malgr�e ette am�elioration des propri�et�es

reherh�ees, les bilans des enthalpies des r�eations �evalu�ees �a partir des solides et mol�eules

de r�ef�erene, sont positives et souvent sup�erieures �a elles des phases analogues moins rihes

en arbone.

De plus, une valeur similaire de �Ho
f;0 (4 kJ/mol de di��erene) a �et�e alul�ee pour la

struture 2D de C11N4 et pour la struture �-C3N4 arat�eris�ee par des liaisons sp3, i.e.

144
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tri-dimensionnelle (3D). Ce r�esultat permet de sugg�erer que des �ehantillons polyphasiques

seront fr�equemment obtenus lors du d�epôt de ompos�es rihes en arbone. En partiulier, il est

vraisemblable qu'un m�elange des di��erentes formes, appartenant �a di��erentes stoehiom�etries,

sera toujours pr�esent lors de la synth�ese des nitrures de arbone. Cependant ette onlusion

devrait être modul�ee par un examen approfondi des aspets in�etiques des phases mod�eles

�etudi�ees (f. par ex. les as du diamant et du graphite).

Les signatures ELNES ont �egalement �et�e raport�ees pour les phases mod�eles des deux

stoehiom�etries C3N4 and C11N4. Les spetres th�eoriques indiquent la possibilit�e de distinguer

les di��erentes phases par l'examen du hangement du nombre et positions des pis pour les

seuils K de C et N.

Malgr�e plusieurs tentatives infrutueuses de produire des mat�eriaux CNx monophasiques,

dans l'�etat atuel de l'art, il reste n�eanmoins pour les phases amorphes form�ees des ap-

pliations importantes dans di��erents domaines. L'utilisation ommeriale prinipale des ni-

trures de arbone est aujourd'hui dans le domaine de l'enregistrement magn�etique (protetion

des têtes de leture et des disques durs pour la miro-informatique). Cependant les enro-

bages proteteurs sont �egalement utiles en m�edeine pour les implants humains en arthro-

plastie. G�en�eralement, des �lms amorphes peuvent être utilis�es dans toutes les appliations

o�u les enrobages ave des �lms mines de arbone sont requis. Par ons�equent, malgr�e le

manque d'�ehantillons de nitrure de arbone ristallins et purs, l'importane de produire des

�lms mines homog�enes et bien arat�eris�es (m�eaniquement et spetrosopiquement) de

mat�eriaux durs �a base de arbone ne devrait pas être n�eglig�ee.

11.2 Boronitrures de Carbone

Au Chapitre 9, nous avons entrepris l'�etude d�etaill�ee d'un lasse iso�eletrique (du arbone)

de mat�eriaux dans le ternaire BCN : BC2N. Les atomes de arbone ont �et�e rempla�es par

le bore et l'azote dans les strutures hexagonale (lonsdaleite) et ubique du diamant, ave

omme objetif, la mise en �evidene de nouveaux boronitrures de arbone tri-dimensionnels

suseptibles d'être ultra-durs.

La struture tri-dimensionnelle, appel�ee III-BC2N, a pu ainsi être pr�edite omme une des

formes les plus stables des phases BC2N. En partiulier, sa grande �energie de oh�esion a

�et�e attribu�ee au grand nombre de liaisons B-N et �a la pr�esene de yles altern�es : -C-C- et

-B-N-. De plus, une �etude d�etaill�ee de la r�eponse de la maille �el�ementaire aux hangements

de volume et de forme a montr�e un aroissement de la duret�e des phases BC2N par rapport

au nitrure de bore ubique. Par ons�equent, en examinant les stabilit�es relatives et les valeurs

alul�ees des modules d'�elastiit�e et de ompressibilit�e, la phase III de BC2N r�esulte, parmi les

phases mod�eles �etudi�ees, omme le meilleur andidat pour le remplaement de BN ubique

ou du diamant dans di��erentes appliations m�eaniques. L'enthalpie molaire standard de la
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r�eation de formation a �et�e �egalement �evalu�ee exothermique (� -133 kJ/mol1), e qui est

en faveur du d�epôt de BC2N sous forme ristalline dans des onditions de temp�erature et

pression relativement faibles par rapport aux nitrures de arbone.

En�n, les spetres de r�ef�erene ELNES ont �et�e propos�es pour di��erentes phases �a liaisons

types sp2 et sp3 -syst�emes mod�eles 2D et 3D respetivement-. De tels signatures seront

suseptibles d'identi�er les phases ristallines pures au sein d'�ehantillons polymorphes.

11.3 Prospetives et \e qui reste �a faire"

Dans l'objetif d'approfondir davantage le sujet des nitrures de arbone, la tendane

g�en�erale trouv�ee au niveau de la stabilit�e, des propri�et�es �eletroniques et m�eaniques devrait

�egalement être v�eri��ee pour les autres ompos�es iso�eletroniques. Des strutures ristallines

mod�eles telles que les ompositions C5N4, C3N2, C7N4 (Fig. 10.1), C9N4 et... pourraient

être propos�ees et �etudi�ees pour �etablir une syst�ematique des tendanes dans les mat�eriaux

CNx.

Comme il a �et�e mentionn�e dans la Setion 8.3.7 la possibilit�e d'avoir une stablit�e arue

des CNx pourrait être reherh�ee dans les phases de type fuller�ene. Au vu des derniers r�esultats

exp�erimentaux, des syst�emes �a nanotubes et nano�bres devraient �egalement être pris en

ompte omme de nouvelles formes potentielles de nitrures ainsi que de boronitrures de

arbone. Cependant, la synth�ese et l'�etude de tels ompos�es onernerait plutôt que les

ultra-durs, les nouvelles g�en�erations d'�emetteurs �eletroniques par e�et de hamp.

1Valeur moyenne obtenue �a partir de aluls FP-LAPW dans la fontionnelle GGA.
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