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Abstract. We give a drawing of Kn in 3D in which vertices are placed
at integer grid points and edges are drawn crossing-free with at most one
bend per edge in a volume bounded by O(n2.5).

1 Introduction

Drawing graphs in three dimensions has been considered by several authors in
the graph-drawing field under a variety of models. One natural model is to draw
vertices as points at integer-valued grid points in a 3D Cartesian coordinate
system and represent edges as straight line segments between adjacent vertices
with no pair of edges intersecting. The volume of such a drawing is typically
defined in terms of a smallest bounding box containing the drawing and with
sides orthogonal to one of the coordinate axes. If such a box B has width w,
length l and height h, then we refer to the dimensions of B as (w + 1) × (l +
1)× (h + 1) and define the volume of B as (w + 1) · (l + 1) · (h + 1).

It was shown by Cohen et al. [3] that it is possible to draw any graph in this
model, and indeed the complete graph Kn is drawable within a bounding box
of volume Θ(n3). Restricted classes of graphs may however be drawn in smaller
asymptotic volume. For example, Calamonieri and Sterbini [2] showed that 2-, 3-,
and 4-colourable graphs can be drawn in O(n2) volume. Pach et al. [11] showed a
volume bound of Θ(n2) for r-colourable graphs (r a constant). Dujmović et al. [4]
investigated the connection of bounded tree-width to 3D layouts. Felsner et al. [8]
showed that outerplanar graphs can be drawn in O(n) volume. Establishing
tight volume bounds for planar graphs remains an open problem. Dujmović and
Wood [5] showed an upper bound of O(n1.5) on the volume of planar graphs at
Graph Drawing 2003.

In 2-dimensional graph drawing, the effect of allowing bends in edges has
been well studied. For example, Kaufmann and Wiese [9] showed that all planar
graphs can be drawn with only 2 bends per edge and all vertices located on a
straight line.

The consequences of allowing bends in 3D has received less attention. Note
that bend points must also occur at integer grid points. Bose et al. [1] showed
? Supported in part by the NSERC Canada.



that the number of edges in a graph provides an asymptotic lower bound on the
volume regardless of the number of bends permitted, thus establishing Ω(n2) as
the lower bound on the volume for Kn. This lower bound was explicitly achieved
by Dyck et al. [7] who presented a construction with at most 2 bends per edge.
The upper bound is also a consequence of a more general result of Dujmović and
Wood [6]. In [10], Morin and Wood presented a one-bend drawing of Kn that
achieves O(n3/ log2 n) volume. It is the gap between this result and the Ω(n2)
lower bound that motivates this paper; we improve the Morin and Wood result
to achieve a one-bend drawing with volume O(n2.5).

2 Preliminaries

We call the axes of our 3D Cartesian coordinate system respectively X, Y and Z.
The one-bend construction of Kn by Morin and Wood [10] considers O(log n)

packets of O( n
log n ) collinear vertices. All the vertices lie in the XY -plane and

edges joining vertices of different packets lie above this plane. Edges joining
vertices within a packet lie below this plane and the volume of these (complete)
subgraphs is a consequence of the following lemma.

Lemma 1 ([10]). For all q > 1, Km has a one-bend drawing in an axis-parallel
box of size q ×m×

⌈
π2

3
m2

q

⌉
with all the vertices on the Y -axis.

Indeed, Ω(n3) volume is required for a collinear one-bend drawing of Kn as
shown by Morin and Wood. We present here a brief description of the construc-
tion behind Lemma 1 because we will use it in our construction. The edges are
divided into Θ(m2) chains of edges (i.e., sequences of edges). A chain connects
all vertices with index equal to i modulo j such that the vertices on the chain
are ordered with increasing indices. In each chain, the bends are placed on a line
parallel to the Y -axis through a point of integer coordinates (x, z) in the XZ-
plane. The chains thus lie in planes that contain the Y -axis (where the vertices
lie). In the XZ-plane, the points (x, z) are chosen so that they are all strictly
visible from the origin. The well-known fact that there are Θ(m2) such choices
in a rectangle of size q × m2

q ensures that all the Θ(m2) chains can be placed in
distinct planes, and thus that the edges do not cross.

3 The construction

Our construction is roughly as follows. We split the n vertices into k packets of
n
k vertices, where all vertices in one packet have the same X and Z coordinates.
All edges of the complete graph contain a bend. All edges joining two vertices
of one packet are placed below and right (positive X direction) of the packet,
and all edges joining two vertices of different packets are placed “above”. We
present our construction for an arbitrary k and show later that the volume of the
bounding box of the drawing is minimized for k = n

1
4 . We assume for simplicity

that n
k is an integer.



X

Z

vi0,?

vi,?

e?,?→i,0

e?,?→i,nk−1

X

Y

v0,1

Z

X

2 4 60

Fig. 1. (a) Projection on the XY -plane of the vertices (dots), the bends (squares),
and the edges leaving vertex v0,1. Here, n = 16 and k = 4. (b) Construction of the
Z-coordinates. (c) XZ-projection of the bounding boxes of the interpacket edges.

X and Y coordinates of the vertices. We first describe the X and Y-
coordinates of the vertices. Refer to Figure 1(a). All vertices have different Y-
coordinates, ranging between 0 and n − 1. We divide the set of n vertices into
k packets, denoted V0, . . . , Vk−1, of n

k vertices. All vertices in the same packet
Vi have the same X-coordinate 2i, the same Z-coordinate zi (defined later), and
consecutive Y-coordinates. Precisely, the j-th vertex in the i-th packet, denoted
vi,j , has coordinates (2i, in

k + j, zi), with 0 6 j 6 n
k − 1 and 0 6 i 6 k − 1.

Edges joining vertices of one packet. Since all the vertices of one packet are
collinear, we can draw the complete graph on these vertices using the q × m ×
O(m2/q) volume construction of [10] described in Section 2. In that construction
there are m collinear vertices; here we have m = n

k vertices. We choose q = k
and draw the edges so that the bounding box of this complete subgraph is below
(negative Z) and to the right (positive X) of the vertices. Notice that we have
chosen q = k so that these complete subgraphs do not asymptotically increase
the width of the final drawing. In the sequel of the construction, we only consider
edges that join vertices of distinct packets, and their bends.

X and Y coordinates of the bends. Refer to Figure 1(a). The bend of an
edge joining vertex vi1,j1 to vertex vi2,j2 , with i1 < i2, is denoted ei1,j1→i2,j2 .
It separates the edge into two distinct segments, the outgoing segment which
starts at vi1,j1 and ends at ei1,j1→i2,j2 , and the incoming segment which starts
with ei1,j1→i2,j2 and ends at vi2,j2 .

A bend ei1,j1→i2,j2 has coordinates (2i2 − 1, i1
n
k + j1, zi2,j2), that is, its X-

coordinate is one less than the X-coordinate of vi2,j2 , its Y -coordinate is the
same as for vi1,j1 , and its Z-coordinate, which only depends on vi2,j2 , will be
defined later.

Z-coordinates of the vertices and bends. We will assign values to zi and
zi,j so that edges do not cross. In fact, our construction is designed to verify
the following lemma. In the following we consider the projection on the XZ-



plane of the vertices vi,? and bends e?,?→i,j where ? can take any value since the
projected points are identical.

Lemma 2. Projected onto the XZ-plane, the polar ordering ≺i0 viewed from a
vertex vi0,? of the vertices vi,? and bends e?,?→i,j with i0 < i < k and 0 6 j < n

k
satisfies vi−1,? ≺i0 e?,?→i,0 ≺i0 . . . ≺i0 e?,?→i,j ≺i0 . . . ≺i0 e?,?→i, n

k−1 �i0 vi,?.

Our construction is as follows. First, let z0 = 0 and z1,j = j + 1, then z1 is
chosen such that v1,? is at the same polar angle about v0,? as e0,?→1, n

k−1, which
gives z1 = 2z1, n

k−1 = 2n
k (see Figure 1(b)).

Assume now that we have placed vertices and bends up to index i. To get
a correct polar ordering around vi−1,? we need to have the next bends above
the line through vi−1,? and vi,? thus we place the next bend at zi+1,0 = zi +
1
2 (zi − zi−1) + 1 and the following bends on edges going to vi+1,? at zi+1,j =
zi + 1

2 (zi − zi−1) + 1 + j.
The vertex vi+1,? is placed at the same polar angle about vi,? as e?,?→i+1, n

k−1

which gives zi+1 = zi +2(zi+1, n
k−1− zi) = zi +2( zi−zi−1

2 + n
k ) = 2zi− zi−1 +2n

k ;
solving this recurrence1 yields zi = i(i + 1)n

k . Then we obtain zi,j = zi−1 +
1
2 (zi−1 − zi−2) + 1 + j = (i− 1)(i + 1)n

k + 1 + j. To summarize, the coordinates
of the vertices and bends are

vi,j =
(

2i, i
n

k
+ j, i(i + 1)

n

k

)
ei1,j1→i2,j2 =

(
2i2 − 1, i1

n

k
+ j1, (i22 − 1)

n

k
+ 1 + j2

)
Proof of Lemma 2: The correct polar ordering of the vi,? viewed from vi0,? is
guaranteed since all these points are ordered on a convex curve (i.e. a parabola).
Let Li be the line through vi,? and vi+1,?. The correct polar ordering of vi,?, the
e?,?→i+1,j and vi+1,?, viewed from vi,?, comes directly from the construction;
moreover, this ordering is the same for all viewpoints vi0,?, i0 < i, since these
viewpoints lie above Li−1 (see Figure 1(b)).

4 Proof of correctness

We say that two edges cross if their relative interiors intersect. We prove in this
section that no two edges of our construction cross. We first show that the edges
joining vertices within the same packet induce no crossing. Then, we show that
there is no crossing between two outgoing segments, two incoming segments, and
finally one outgoing and one incoming segment.

Edges joining vertices within packets. We use the same technique as in the
Morin-Wood construction [10] to ensure that no two edges joining vertices within
a given packet cross. An edge joining vertices within a packet crosses no other
1 An inductive verification is easy since with this formula we have:

2zi− zi−1 +2n
k

= n
k
[2i(i+1)− i(i− 1)+2] = n

k
[i2 +3i+2] = (i+1)(i+2)n

k
= zi+1.
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Fig. 2. Incoming and outgoing segments in XY and XZ-projections.

edge joining vertices within another packet since the projection onto the Y -axis
of the bounding boxes of the Morin-Wood constructions do not intersect. Finally,
the bounding box of the Morin-Wood construction properly intersects no edge
joining distinct packets since they do not properly intersect in XZ-projection
(see Fig. 1(c)). Hence, edges joining vertices within a packet cross no other edge.

Outgoing-outgoing segments. If two outgoing segments start from different
vertices, they lie in two different planes parallel to the XZ-plane. Otherwise,
by Lemma 2, the two segments only share their starting point. Hence no two
outgoing segments cross.

Incoming-incoming segments. Note that an incoming segment joining e?,?→i,j

to vi,j lies in the plane Pi,j through the two lines parallel to the Y -axis and con-
taining, respectively, all the e?,?→i,j and all the vi,?. For a pair of incoming
segments, we consider three cases according to whether both segments finish at
the same vertex, at distinct vertices of the same packet, or at vertices of different
packets. In the first case, the segments live in a plane Pi,j ; they start at different
bends and end at the same vertex, hence they do not cross. In the second case,
the two segments live in two planes Pi,j and Pi,j′ whose intersection is the line
vi,jvi,j′ . The segments end there and thus cannot cross. In the third case, the
segments do not overlap in the X-direction, thus they do not cross.

Incoming-outgoing segments. Consider an outgoing segment joining vertex
vi1,? to bend ei1,?→i3,? and an incoming segment joining bend e?,?→i2,? to vertex
vi2,?, where ? can be any value (see Figure 2). The ranges over the X-axis of the
two segments are [2i1, 2i3−1] and [2i2−1, 2i2]. They overlap only if i1 < i2 < i3,
and, in such a case, Lemma 2 yields that, viewed from vi1,?, the points satisfy the
polar ordering e?,?→i2,? �i1 vi2,? ≺i1 ei1,?→i3,?. This implies that, in projection
onto the XZ-plane, points e?,?→i2,? and vi2,? are below the line segment joining
vi1,? and ei1,?→i3,?. Hence the two segments do not cross.



5 Volume analysis

The dimension of the bounding box of our construction for edges between packets
has size smaller than 2k×n×kn since the highest vertex has Z-coordinate zk−1 =
k(k − 1)n

k . The complete subgraphs within packets have size k × n
k ×

⌈
π2

3
n2

k3

⌉
and thus our complete construction fits in a box of size O(k)× n×O(n2

k3 + kn).
To balance the increasing and decreasing terms of the Z-dimension we choose k

such that n2

k3 = kn that is k = n
1
4 . Recall that we assumed for simplicity that k

and n
k were integers; for any n we can apply our construction with dn 1

4 e4 vertices
and then remove the extra vertices and edges. We thus have the following result.

Theorem 1. Every complete graph Kn has a one-bend drawing in an axis-
parallel box of dimensions O(n

1
4 )× n×O(n

5
4 ) and volume O(n2.5).

Remark 1. An alternative for applying Lemma 1 with boxes that match the X-
dimension of our construction (choosing q = k with m = n

k ) is to take boxes
whose size matches the Z-dimension of our construction (choosing q = kn with
m = n

k ). Then the dimension of the bounding box of the Morin-Wood construc-
tion for interpacket edges is O(n2

k2 · 1
kn )× n

k × kn which gives a total size for our
construction of O(k + n

k3 )×n×2kn. This is still optimal for k = n
1
4 but it offers

a trade-off between volume and aspect ratio of the box for k ∈ [1, n
1
4 ].

References

1. P. Bose, J. Czyzowicz, P. Morin and D. R. Wood. The maximum number of edges
in a three-dimensional grid-drawing, JGAA, 8(1):21–26, 2004.

2. T. Calamoneri and A. Sterbini. 3D straight-line grid drawing of 4-colorable graphs,
Information Processing Letters 63(2):97–102, 1997.

3. R. F. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-dimensional graph drawing,
Algorithmica, 17:199–208, 1997.
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