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Harmonic functions on the real hyperbolic ball II
Hardy-Sobolev and Lipschitz spaces

By Sandrine GRELLIER and Philippe JAMING of MAPMO-Orléans

(Received october, 2001)

Abstract. In this paper, we pursue the study of harmonic functions on the real hyperbolic
ball started in [13]. Our focus here is on the theory of Hardy-Sobolev and Lipschitz spaces of these
functions. We prove here that these spaces admit Fefferman-Stein like characterizations in terms
of maximal and square functionals. We further prove that the hyperbolic harmonic extension of
Lipschitz functions on the boundary extend into Lipschitz functions on the whole ball. In doing so,
we exhibit differences of behaviour of derivatives of harmonic functions depending on the parity of
the dimension of the ball and on the parity of the order of derivation.

1. Introduction

In this article, the sequel of [13], we study Hardy-Sobolev and Lipschitz spaces of
harmonic functions on the real hyperbolic ball.

The main motivation of this paper lies in the recent developments of the theory
of Hardy-Sobolev spaces of M-harmonic functions related to the complex hyperbolic
metric on the unit ball, as exposed in [1] and [2]. Our aim here is to develop a similar
theory in the case of the real hyperbolic ball.

Our starting point is a result of [13] stating that the Hardy spaces Hp of hyperbolic
harmonic functions (H-harmonic functions in the terminology of [13]) admit an atomic
decomposition similar to the Euclidean harmonic functions. Then, for 0 < p < +∞,
define the space Hp(Sn−1) as Lp(Sn−1) if p > 1 and as the equivalent of Garnett-
Latter’s atomic Hp-space if 0 < p ≤ 1 (see [13] for the exact definition). This space has
been characterized in terms of square functionals of the Euclidean harmonic extensions
of its elements by Colzani [5].

Further, Cifuentes [3] has extended the area integral characterization of Hp spaces
for Rn+1

+ to all symmetric spaces of rank one of the non-compact type, including the
real hyperbolic spaces. For sake of completeness, we will give here the g-functional
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characterization of Hp spaces, even though the proof being routine once the area
characterization is obtained. We will then focus on developing a theory of Hardy-
Sobolev spaces of H-harmonic functions, similar to the one developed in [2]. The first
step is to prove mean-value inequalities for H-harmonic functions and their derivatives.
This is done by adapting the proof in [2] using the theory of hypo-elliptic operators.
We think that our mean-value inequalities have an interest of their own and that the
proof should adapt to all rank one spaces of the non-compact type. The remaining of
the proofs are direct adaptations of [2]. However, as in [13] where it is proved that
the boundary behavior of derivatives of H-harmonic functions depends on the parity
of the dimension of Bn, it is proved here that the characterizations of Hardy-Sobolev
spaces depend on the parity of the order of derivation. Note that Graham [10] has
already noticed a dependence of the behavior of harmonic functions on the parity of
the dimension of the balls.

Finally, we will characterize some Lipschitz spaces on the sphere via their H-harmonic
extension on the real hyperbolic ball. In even dimension, we will take advantage of
links between H-harmonic functions and Euclidean harmonic functions exhibited in
[18] (see (2.1) in section 2.3 below). This will allow us to characterize Lipschitz func-
tions of any order. In odd dimension, the situation is different as the characterization
only holds for Lipschitz functions of order < n− 1 but may fail for Lipschitz functions
of order n − 1.

This article is organized as follows. In the next section we present the setting of our
problem and state our main results. Section 3 is devoted to the proofs of the technical
lemmas we will need, including the mean-value inequalities. We conclude this section
by completing the Fefferman-Stein characterization of our Hp spaces. The following
section is devoted to the proofs of similar characterizations for Hardy-Sobolev spaces
while in the last section we give the results on Lipschitz spaces.

2. Statement of the problem and results

2.1. SO(n, 1) and its action on Bn

We consider G = SO0(n, 1) ⊂ GLn+1(R), (n ≥ 3) the identity component of the
group of matrices g = (gij)0≤i,j≤n such that g00 ≥ 1, det g = 1 and that leave in-
variant the quadratic form −x2

0 + x2
1 + . . . + x2

n. The group G admits both a Cartan
decomposition G = KA+K and an Iwasawa decomposition G = NAK with

K =

{

k =

(

1 0

0 k̂

)

: k̂ ∈ SO(n)

}

,

A =







at =





cosh t sinh t 0
sinh t cosh t 0

0 0 Idn−1



 : t ∈ R


and A+ = {at : t ∈ R+}
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and

N =



























nξ =















1 + δ2

2 − δ2

2 ξ2 . . . ξn
δ2

2 1 − δ2

2 ξ2 . . . ξn

ξ2 −ξ2 1 0
...

...
. . .

ξn −ξn 0 1















, ξ = (ξ2, . . . , ξn) ∈ Rn−1



























In this decomposition, every g ∈ G can either be written as g = kgat(g)k
′

g with

kg, k
′

g ∈ K and at(g) ∈ A+ or g = ngas(g)k̃g with ng ∈ N , as(g) ∈ A and k̃g ∈ K.

(x)ζ

x

n

n

+

B

(y ,y)
0

y/y
0

Η

Figure 1: Two possible identifications of H+
n with Bn : the conformal model used in this paper where

ζ(x) ∈ H+
n is identified with x ∈ Bn and the perhaps more usual model where (y0, y) ∈ H+

n is
identified with y

y0
∈ Bn.

Let |.| be the Euclidean norm on Rn and 〈., .〉 the associated scalar product. LetBn = {x ∈ Rn : |x| < 1} and Sn−1 = ∂Bn = {x ∈ Rn : |x| = 1}. The homogeneous
space G/K can be identified with the upper sheet Hn

+ of the two-sheeted hyperbolöıd
−x2

0 + x2
1 + . . . + x2

n = −1. This in turn may be identified with Bn. There are several
ways to do so (see figure 2.1). We will here use the “conformal ball model” (see [17]
page 127), where a point x ∈ Bn is identified with

ζ(x) =

(

1 + |x|2

1 − |x|2
,

2x1

1 − |x|2
, . . . ,

2xn

1 − |x|2

)

∈ Hn
+.

It is then easy (see [18]) to see that the linear action of SO(n, 1) on Hn
+ ≃ G/K is
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identified with the conformal action on Bn given by y = g.x with

yp =
1+|x|2

2 gp0 +
∑n

l=1 gplxl

1−|x|2

2 + 1+|x|2

2 g00 +
∑n

l=1 g0lxl

for p = 1, . . . , n.

An invariant measure on Bn is given by

dµ =
dx

(1 − |x|2)n
=

rn−1drdσ

(1 − r2)n

where dx is the Lebesgue measure on Bn and dσ is the normalized surface measure onSn−1.
We will need the following elementary facts about this action (see [12]):

Fact 2.1. Let g ∈ SO(n, 1) and let x0 = g.0. If 0 < ε < 1
6 , then

B
(

x0,

√
2

8
(1 − |x0|2)ε

)

⊂ g.B(0, ε) ⊂ B
(

x0, 6(1 − |x0|2)ε
)

.

Fact 2.2. Let g ∈ SO(n, 1) and let x0 = g.0. Let v be a smooth function on Bn and
define f on Bn by f(x) = v(g.x). Then, for every k,

(1 − |x0|2)k
∣

∣∇kv(x0)
∣

∣ ≤ C
∣

∣∇kf(0)
∣

∣,

where
∣

∣∇kf
∣

∣ means sup
{∣

∣

∣

∂|α|f
∂xα

∣

∣

∣ : |α| ≤ k
}

.

2.2. The invariant Laplacian on Bn and the associated Poisson kernel

From [18] (see also [8],[7]), we know that the invariant Laplacian on Bn for the
considered action can be written as

D = (1 − r2)2∆ + 2(n − 2)(1 − r2)

n
∑

i=1

xi
∂

∂xi

where r = |x| = (x2
1 + . . . + x2

n)1/2 and ∆ is the Euclidean Laplacian ∆ =

n
∑

i=1

∂2

∂x2
i

.

Write ∆ in radial-tangential coordinates :

∆ =
1

rn−1

∂

∂r

(

rn−1 ∂

∂r

)

+
1

r2
∆σ =

1

r2
N2 +

n − 2

r2
N +

1

r2
∆σ

with N = r
d

dr
=

n
∑

i=1

xi
∂

∂xi
and ∆σ the tangential part of the Euclidean Laplacian.

We then obtain that D is given in radial-tangential coordinates by

D =
1 − r2

r2

[

(1 − r2)N2 + (n − 2)(1 + r2)N + (1 − r2)∆σ

]

.
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Note that, from ∆σ = r2∆−N2 − (n− 2)N , ∆σ is given in Cartesian coordinates by

∆σ =
∑

i<j

L2
i,j with Li,j = xi

∂

∂xj
− xj

∂

∂xi
.

Definition 2.3. A function u on Bn is H-harmonic if Du = 0 on Bn.

Computations will often be simpler when replacing D by

L =
1

r2

[

(1 − r2)N2 + (n − 2)(1 + r2)N + (1 − r2)∆σ

]

.

Note that Du = 0 if and only if Lu = 0.
The Poisson kernel that solves the Dirichlet problem associated to D is given byPh(rη, ξ) =

(

1 − r2

1 + r2 − 2r〈η, ξ〉

)n−1

for 0 ≤ r < 1, η, ξ ∈ Sn−1 i.e. for rη ∈ Bn and ξ ∈ Sn−1.
Recall that the Euclidean Poisson kernel on the ball is given byPe(rη, ξ) =

1 − r2

(1 + r2 − 2r〈η, ξ〉)n
2

.

Notation : For a distribution ϕ on Sn−1, we define the Poisson integral of ϕ, Pe[ϕ] :Bn 7→ R by Pe[ϕ](rη) = 〈ϕ,Pe(rη, .)〉.

Similarly, we define the H-Poisson integral of ϕ, Ph[ϕ] : Bn 7→ R byPh[ϕ](rη) = 〈ϕ,Ph(rη, .)〉.

2.3. Expansion of H-harmonic functions in spherical harmonics

Let 2F1 denote Gauss’ hyper-geometric function and let Fl(x) = 2F1(l, 1− n
2 , l+ n

2 ; x)
(see [6] for properties of 2F1 used here).

In [15], [16] and [18], the spherical harmonic expansion of H-harmonic functions has
been obtained. Another proof, based on the method developped in [1] for M-harmonic
functions, can be found in [12]. One has the following :

Theorem 2.4. Let u be an H-harmonic function of class C2 on Bn. Then the
spherical harmonic expansion of u is given by

u(rζ) =
∑

l

Fl(r
2)

Fl(1)
rlϕl(ζ),

where ϕl is a spherical harmonic of degree l. Moreover, this series is absolutely con-
vergent and uniformly convergent on every compact subset of Bn.
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It follows that, if we denote by Zζ
l the zonal function of order l with pole ζ, then

the hyperbolic Poisson kernel is given byPh(rζ, ξ) =
∑

l≥0

Fl(r
2)

Fl(1)
rlZζ

l (ξ).

Note that, if the dimension n is even, then Fl is a polynomial of degree n
2 − 1. This

implies that, if u is H-harmonic, then ∆
n
2 u = 0, a fact noticed in [14]. In particular,

H-harmonic functions should then behave like Euclidean harmonic functions, at least
from the analysis point of view. However we will restrict our attention to common
features of even and odd dimension.

The following lemma gives a further link between the hyperbolic Poisson kernel and
the Euclidean one in even dimension:

Lemma 2.5. Assume that n is even, and write n = 2p. There exist p polynomials
P0, P1, . . . , Pp−1 such that, for every rζ ∈ Bn, ξ ∈ Sn−1,Ph(rζ, ξ) =

p−1
∑

k=0

Pk(r)(1 − r2)k ∂k

∂rk
Pe(rζ, ξ).(2.1)

Proof. For a ∈ R, write (a)k = Γ(a+k)
Γ(a) . From [6] we get

Fl(x) = 2F1(l, 1 − p, l + p, x) =
1

(l + p)p−1

(1 − x)2p−1

xl+p−1

dp−1

dxp−1

(

xl+2(p−1)(1 − x)−p
)

.

Let αl,j be defined by αl,0 = 1 and αl,j+1 =
(

l + 2(p − 1) − j
)

αl,j , then by Leibniz’
Formula

2F1(l, 1 − p, l + p, x) =
1

(l + p)p−1

p−1
∑

j=0

(

p − 1
j

)

(p)jαl,jx
p−1−j(1 − x)j .

In particular 2F1(l, 1 − p, l + p, 1) = 1
(l+p)p−1

thus

Fl(x)

Fl(1)
=

p−1
∑

j=0

(

p − 1
j

)

(p)jαl,jx
p−1−j(1 − x)j .

Furthermore, it is easy to see that one can write

αl,j =

j
∑

k=0

ak,j l(l − 1) . . . (l − k + 1)

where the coefficients ak,j are independent of l.
Now, recall that the spherical harmonic expansion of the Euclidean Poisson kernel

is given by Pe(rζ, ξ) =
∑

l≥0

rlZζ
l (ξ). Comparing this with the expansion of Ph and the
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previous computations, we see that there exist polynomials P0, P1, . . . , Pp−1 such that,
for every rζ ∈ Bn, ξ ∈ Sn−1,Ph(rζ, ξ) =

p−1
∑

k=0

Pk(r)(1 − r2)k ∂k

∂rk
Pe(rζ, ξ),

which completes the proof. 2

In [13], another link between euclidean harmonic functions and H-harmonic func-
tions has been exhibited :

Lemma 2.6. There exists a function η : [0, 1] × [0, 1] 7→ R+ such that

i Pe(rζ, ξ) =

∫ 1

0

η(r, ρ)Ph(ρrζ, ξ)dρ, in particular
∫ 1

0
η(r, ρ)dρ = 1;

ii for every α ≥ 0, and every integer k > α, there exists a constant C such that for
every r ∈ [0, 1],

∫ 1

0

∣

∣

∣

∣

∣

(

r
∂

∂r

)k

η(r, ρ)

∣

∣

∣

∣

∣

(1 − ρ)αdρ ≤ C(1 − r)α−k.

According to [13], the function η is given by

η(r, ρ) = c(1 − r2)(1 − r2ρ2)2−n
[

(1 − ρ)(1 − ρr2)
]

n
2
−2

ρ
n
2
−1.

The identity (i) is obtained by integration over Sn−1 in the ξ variable. The estimate
(ii) is obtained in a similar way as in [13] for k = 0 and α = 0 after differentiation.

2.4. Hardy and Hardy-Sobolev spaces

The aim of this article is to extend Fefferman-Stein [9] theory to Hardy and Hardy-
Sobolev spaces of H-harmonic functions. We will therefore need to define analogues
of nontangential maximal functions, area integrals and Littlewood-Paley g functions.

Definition 2.7. For 0 < α < 1 and ζ ∈ Sn−1, let Aα(ζ) be the interior of the
convex hull of B(0, α) and ζ ; Aα(ζ) will be called nontangential approach region.

Note that these approach regions slightly differ from the region Γα(ζ) used by Ci-
fuentes [3]. There, the regions are defined in terms of the Iwasawa decomposition
SO0(n, 1) = NAK by Γα(ζ) = kΓ0

α, where k ∈ K is such that k(1, 0, . . . , 0) = ζ and

Γ0
α = {n(ξ)at.0 : ‖ξ‖ < αe−t, t ∈ R}.

However, the Γα and Aα regions are equivalent in the sense that, for every α < β < γ,
there exists 0 < r0 < 1 such that, for every ζ ∈ Sn−1,

Aα(ζ) \ B(0, r0) ⊂ Γβ(ζ) \ B(0, r0) ⊂ Aγ(ζ) \ B(0, r0).(2.2)

We may now define the usual maximal and square functionals.

Definition 2.8. For a function u defined on Bn, define the following functions onSn−1 :
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radius

ζ

α

Figure 2: nontangential approach region Aα(ζ) and its comparison with Γα(ζ)

1. M[u](ξ) = sup
0<r<1

|u(rξ)|,

2. Mα[u](ξ) = sup
x∈Aα(ξ)

|u(x)|.

3. Sα[u](ξ) =

[

∫

Aα(ξ)

|∇u(x)|2(1 − |x|2)−n+2dx

]
1
2

.

4. SN
α [u](ξ) =

[

∫

Aα(ξ)

|Nu(x)|2(1 − |x|2)−n+2dx

]
1
2

.

5. g[u](ξ) =
[

∫ 1

0 |∇u(tξ)|2(1 − t2)dt
]

1
2

.

6. gN [u](ξ) =
[

∫ 1

0
|Nu(tξ)|2(1 − t2)dt

]
1
2

.

We can then define the Hardy spaces for 0 < p < +∞ as

Hp = {u H− harmonic : M[u] ∈ Lp(Sn−1)}.

The atomic decomposition of these Hp for 0 < p ≤ 1 has been obtained in [13]. The
following result holds:
Theorem A. For 0 < p < +∞ and u H-harmonic, the following are equivalent :

1. u ∈ Hp.

2. u has a boundary distribution in Hp(Sn−1).

3. Mα[u] ∈ Lp(Sn−1) for some (for all) 0 < α < 1.

4. Sα[u] ∈ Lp(Sn−1) for some (for all) 0 < α < 1.
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5. SN
α [u] ∈ Lp(Sn−1) for some (for all) 0 < α < 1.

6. g[u] ∈ Lp(Sn−1),

7. gN [u] ∈ Lp(Sn−1).

Moreover, the Lp norms of these functionals are equivalent.

Some parts of this theorem have already been established by several authors. More
precisely, the equivalence of 1 and 2 is proved in [13]. That 1 and 3 are equivalent is
a direct consequence of the mean-value inequality (see Proposition 3.8). Cifuentes [3]
proved the equivalence of 3 and 4 for the Γα domains. That these may be replaced
by Aα domains results from the equivalence property (2.2). Then, that 3 implies 4 is
Theorem I and the reverse is Theorem II in [3]. Note that the constant L appearing
there is removed by the fact that our Aα domains include a ball around 0 and the
mean-value property. The remaining parts, that is the equivalence of 4 to 7, will be
proved in section 3.4.

Define now the Hardy-Sobolev spaces for 0 < p < +∞ and k ∈ N as

Hp
k = {u H− harmonic : for all j ≤ k, M

[

∇ju
]

∈ Lp(Sn−1)}.

and

Hp
k (Sn−1) = {f ∈ Hp(Sn−1) ; ∇jf ∈ Hp(Sn−1), 0 ≤ j ≤ k}.

We will prove the following theorem:

Theorem B. Let 0 < p < +∞ and k be an integer such that 0 ≤ k ≤ n − 2. Then,
for every H-harmonic function u, the following are equivalent :

1. u ∈ Hp
k.

2. u has a boundary distribution in Hp
k (Sn−1).

3. u has a boundary distribution f satisfying (−∆σ)
l
2 f ∈ Hp(Sn−1) for 0 ≤ l ≤ k.

4. u ∈ Hp
k−1 and for some (for all) α such that 0 < α < 1, Mα

[

(−∆σ)k/2u
]

∈
Lp(Sn−1).

5. u ∈ Hp
k−1 and for some (for all) α such that 0 < α < 1, Sα

[

(−∆σ)k/2u
]

∈
Lp(Sn−1).

6. u ∈ Hp
k−1 and for some (for all) α such that 0 < α < 1, SN

α

[

(−∆σ)k/2u
]

∈
Lp(Sn−1).

7. u ∈ Hp
k−1 and for some (for all) α such that 0 < α < 1, Sα

[

Nku
]

∈ Lp(Sn−1).

8. u ∈ Hp
k−1 and for some (for all) α such that 0 < α < 1, SN

α

[

Nku
]

∈ Lp(Sn−1).

9. u ∈ Hp
k−1 and for some (for all) α such that 0 < α < 1, Sα

[

∇ku
]

∈ Lp(Sn−1).
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Remark 2.9. As (−∆σ)k/2 preserves H-harmonicity, the equivalence of 3, 4, 5 and
6 means that (−∆σ)k/2u ∈ Hp and follows from Theorem A.

For the equivalence between 2 and 3, note that for any differential operatorX of order
l, the operator X(−∆σ)−l/2 is, in local coordinates, a pseudo-differential operator of
order 0. Such operators map Hp(Rn−1) to Hp

loc(Rn−1) (see [20] page 264). Therefore,
taking a system of local coordinates on Sn−1 and using the atomic decomposition of
Hp(Sn−1), we get that X(−∆σ)−l/2 maps Hp(Sn−1) to itself.

Finally, this last fact also shows that one may replace (−∆σ)l/2 by the set of all
products of l operators of the form Li,j .

The other equivalent properties will be established in section 4.

Some of the properties of Theorem B are equivalent with no restriction on k. This is
obvious for Properties 2 to 6 and these always follow from Property 1. It is immediate
from the proof that Properties 7, 8 and 9 are also equivalent for any k and these always
imply Properties 2 to 6.

Moreover, in even dimension, the link between H-harmonic and Euclidean harmonic
functions exhibited in (2.1) allows to show that Property 2 implies Property 8. This
follows from the area integral characterization for Hardy-Sobolev spaces of Euclidean
harmonic functions. We will refrain from giving the details as the same technic will
appear with full details in the proof of the similar fact about Lipschitz spaces. However,
as we do not have a good converse link between H-harmonic and Euclidean harmonic
functions, we lack a tool that would allow us to see whether these properties imply
Property 1 above the critical index.

On the other hand, the restriction k ≤ n − 2 is natural when n is odd : if u ∈ Hp
n−1

and ϕ ∈ C∞(Sn−1) then
∫Sn−1 Nn−1u(rζ)ϕ(ζ)dσ(ζ) is bounded, thus, by Theorem 8

of [13], u is constant. The same is true for Theorem C below.
Define now

Hp
k,N = {u ∈ Hp; M

[

N lu
]

∈ Lp(Sn−1), 0 ≤ l ≤ k}.

In section 4, we study the relationship between Hp
k and Hp

k,N . The situation is slightly
different as parity of the order of derivation is involved.
Theorem C. Let 0 < α < 1, 0 < p < +∞, and k be an integer such that 0 ≤ k ≤ n−2.
Then

1. If k is even, the following are equivalent :

(a) u ∈ Hp
k,N .

(b) For some α such that 0 < α < 1, for every 0 ≤ l ≤ k, Mα

[

N lu
]

∈ Lp(Sn−1).

(c) u ∈ Hp
k and hence all the equivalent properties stated in Theorem B are

valid.

2. If k is odd, the following are equivalent :

(a) u ∈ Hp
k,N

(b) For some α such that 0 < α < 1, for every 0 ≤ l ≤ k, Mα

[

N lu
]

∈ Lp(Sn−1).
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(c) u ∈ Hp
k−1 and M

[

(1 − r2)∆
k+1

2
σ u

]

∈ Lp(Sn−1).

Corollary D. If k ≤ n − 2 is odd, Hp
k ⊂ Hp

k,N .

The inclusion of Hp
k in Hp

k,N may be strict. For instance, let δ be the Dirac mass

in (1, 0, . . . , 0) and let u = Ph[δ]. Then u ∈ Hp
1,N for n

2(n−1) < p ≤ 1 but ∂u
∂xi

is not

uniformly in Lp for p < n
n+1 , thus u /∈ Hp

1 for this range of p’s.

The fact that the space Hp
k,N is strictly bigger looks, at first sight, quite surprising

since it is usually expected that the radial derivative dominates the gradient. In
fact, this is naturally true in the interior of the domains and for instance, Sα(N lu) ∈
Lp(Sn−1), 0 ≤ l ≤ k implies (and in fact is equivalent to) u ∈ Hp

k as stated in Theorem
B.

It is no longer true for conditions involving the behavior of the radial derivatives
near the boundary. For instance, when k = 1, we know from [13] that Nu has a
boundary distribution that is identically zero. So, for u H-harmonic, to be in Hp

1,N

cannot be translated as a constraint on the boundary behaviour of u.

3. Mean-value inequalities and Hardy spaces

3.1. Mean-value inequalities

Recall that H-harmonic functions satisfy the following mean-value equality :
Let a ∈ Bn and g ∈ SO(n, 1) such that g.0 = a. Then, for every H-harmonic

function u,

u(a) =
1

µ
(

B(0, r)
)

∫

g.B(0,r)

u(x)dµ(x).

Thus, with fact 2.1 and dµ =
dx

(1 − |x|2)n
, we get

|u(a)| ≤ C

(1 − |a|2)n

∫

B
(

a,(1−|a|2)ε
)
|u(x)|dx.(3.1)

We will also need mean-value inequalities for normal derivatives of H-harmonic func-
tions, in particular when we study Hardy-Sobolev spaces. But, normal derivatives of
H-harmonic functions are no longer H-harmonic, so that one may not directly apply
Inequality (3.1) to Nku.

To obtain these inequalities, we will follow the main lines of the proof in [2] for
M-harmonic functions.

Therefore, we will first study the commutator between Nk and L (which is easier
to compute than the commutator between Nk and D = (1 − r2)L). This leads us to
the existence of an elliptic operator Nq such that for every H-harmonic function u,
Nku is annihilated by Nq. We can then apply L2-theory of elliptic operators and get
estimates for Nku at 0 by its mean-value. To obtain the estimates in an arbitrary
point a of Bn, we transport the result from 0 to a with help of the action of SO(n, 1)
on Bn by computing the action of g ∈ SO(n, 1) on Nq.
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Note that

LN − NL = 2L + 2(N2 + ∆σ) − 2(n − 2)N.(3.2)

Moreover an easy induction argument shows that there exist two sequences of polyno-
mials (Pk)k≥1 and (Qk)k≥1 of degree k − 1 such that for k ≥ 1,

LNk = (N + 2I)kL + Pk(N)N2 + Qk(N)∆σ − 2(n − 2)(N + 2I)k−1N.

From this, using the same induction as in [2], we get

Proposition 3.1. For every k, there exist polynomials Sk(x, y) of degree at most
q − 1 (with q = 2k−1) and Rk(x, y) = xq + . . . such that, if u is H-harmonic, then

L
(

Rk(L, ∆σ) − Sk(L, ∆σ)N
)

Nku = 0.

Note that Nq := L
(

Rk(L, ∆σ)−Sk(L, ∆σ)N
)

= Lq+1+ terms of order ≤ 2q in L, ∆σ

with C∞ coefficients and q = 2k−1. In particular, if u is H-harmonic, then v = Nku is
a solution of an equation Nqv = 0.

We will use the following formalism : for M a differential operator and Φ a diffeo-
morphism of Bn, if f = v ◦ Φ, then define Φ∗M by

Φ∗M(f) = (Mv) ◦ Φ.

It is then obvious that

Φ∗(M1 ◦ M2) = (Φ∗M1) ◦ (Φ∗M2)
Φ∗(hM) = h(Φ).Φ∗M(3.3)

Let g ∈ SO(n, 1) be such that g.0 = ρζ = a ∈ Bn and let Φa :
Bn → Bn

x 7→ g.x
.

But, by definition, D is invariant by the action of SO(n, 1) on Bn, that is Φa
∗D = D.

On the other hand, D = (1−|x|2)L thus (3.3) tells us that Φa
∗D = (1−|Φa(x)|2)Φa

∗L,

which implies that Φa
∗L = 1−|x|2

1−|g.x|2
L, and the formula of [18] page 39 gives

Φa
∗L =

(1 + ρ2|x|2 − 2ρ〈x, ζ〉)2
1 − ρ2

L.

Further Φa
∗N is a differential operator of order 1 with C∞ coefficients defined by

Φa
∗Nf(x) =

〈

Φa(x), dvΦa(x)

〉

=
〈

Φa(x), d(f ◦ Φ−1
a )Φa(x)

〉

=
〈

Φa(x), dfz .d(Φ−1
a )Φa(x)

〉

thus, if x ∈ B
(

0, ε
6

)

then, with Fact 2.1, Φa(x) ∈ B
(

a, (1 − a2)ε
)

, and with Fact 2.2

(applied to v(x) = x), the coefficients of (1− |a|2)Φa
∗N as well as their derivatives are

C∞ and bounded independently of a.
As Φa

∗N2 = (Φa
∗N) ◦ (Φa

∗N), (1 − |a|2)2Φa
∗N2 is a differential operator of order 2

with C∞ coefficients bounded (as well as their derivatives) independently of a.
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At last, ∆σ = r2

1−r2 L − N2 − (n − 2)1+r2

1−r2 N thus (1 − |a|2)Φa
∗∆σ is also a differ-

ential operator of order 2 with C∞ coefficients bounded (as well as their derivatives)
independently of a.

Finally, as Nq = Lq+1+ terms of order ≤ 2q in L, ∆σ and N with C∞ coefficients,
thus

Φa
∗Nq = Φa

∗Lq+1 + terms of order ≤ 2q with C∞ coefficients

=
(1 + ρ2|x|2 − 2ρ〈x, ζ〉)2(q+1)

(1 − ρ2)q+1
Lq+1

+terms of order ≤ 2q with C∞ coefficients

=
|ρx − ζ|2(q+1)

(1 − ρ2)q+1
Lq+1 +Rq,a

where Rq,a is a differential operator of order ≤ 2q with C∞ coefficients.
Let u be an H-harmonic function, v = Nku and f = v ◦Φa. As v satisfies Nqv = 0,

f satisfies (1 − |a|2)q+1Φa
∗Nqf = 0 on B

(

0, ε
6

)

(with e.g. ε < 1). We have thus

shown that (1 − ρ2)q+1Φa
∗Nq satisfies on B

(

0, ε
6

)

, all the hypotheses (with constants
independent on a) of the following theorem (see [2] page 678) :

Theorem 3.2. Suppose P (D) is a differential operator in RN ,

P (D) =
∑

|α|≤2q

hα(x)Dα where Dα =
∂α1

∂xα1

1

. . .
∂αN

∂xαN

N

,

which is elliptic with constant c0 in B(0, ε), that is,

∑

|α|=2q

hα(x)ξα ≥ c0|ξ|2q
for ξ ∈ RN ,

and with hα ∈ C∞
(

B(0, ε)
)

. Assume that P (D)f = 0 in B(0, ε). Then, for all non-
negative integers m and all p such that 0 < p < ∞,

|∇mf(0)| ≤ C

(

∫

|x|≤ε

|f(x)|pdx

)1/p

,

where C depends only on c0, ε, m, p and a bound of the norms of the functions hα in
some Cl

(

B(0, ε)
)

-space with l = l(m).

From this, we get

∣

∣∇df(0)
∣

∣ ≤ c

(

∫

|x|≤ ε
6

|f(x)|pdx

)
1
p

≤ c

(

∫

|x|≤ ε
6

|f(x)|p dx

(1 − |x|2)n

)
1
p

or, with Fact 2.2,

∣

∣∇dv(a)
∣

∣ ≤ c

(

∫

B
(

0, ε
6

)
|v ◦ Φa(x)|pdµ(x)

)
1
p

× (1 − |a|2)−d
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where µ is the G-invariant measure on Bn. Thus

∣

∣∇dv(a)
∣

∣ ≤ c

(

∫

g.B
(

0, ε
6

)
|v(x)|pdµ(x)

)
1
p

× (1 − |a|2)−d

and, with Fact 2.1,

∣

∣∇dv(a)
∣

∣ ≤ c

(

∫

B
(

a,(1−|a|2)ε
)
|v(x)|p dx

(1 − |x|2)n

)
1
p

× (1 − |a|2)−d

≤ c(1 − |a|2)−d−n
p

(

∫

B
(

a,(1−|a|2)ε
)
|v(x)|pdx

)
1
p

.

In conclusion, we have just proved the following lemma :

Lemma 3.3.(Mean-value inequality) For every 0 < ε < 1, k, d ∈ N, 0 < p < +∞,
there exists a constant c such that, for every H-harmonic function u, and every a ∈ Bn,

∣

∣∇dNku(a)
∣

∣ ≤ c(1 − |a|)−d−n
p

(

∫

B
(

a,(1−|a|2)ε
)

∣

∣Nku(x)
∣

∣

p
dx

)
1
p

.

We now show that this mean-value inequality applies to any derivative of an H-
harmonic function:

Proposition 3.4. For every 0 < ε < 1 and every 0 < p < +∞, there exists a
constant C such that for every H-harmonic function u, every k ∈ N, d ≥ 0, and for
every a ∈ Bn,

∣

∣∇k+du(a)
∣

∣ ≤ C(1 − |a|)−d−n
p

(

∫

B
(

a,(1−|a|2)ε
)

∣

∣∇ku(x)
∣

∣

p
dx

)
1
p

.

Proof. Recall that Li,j = xi
∂

∂xj
− xj

∂
∂xi

(1 ≤ i < j ≤ n), in particular, these

operators preserve H-harmonicity and NLi,j = Li,jN .
Applying Lemma 3.3 to Lk

i,ju, for every 0 < ε < 1 and every 0 < p < +∞, there
exists a constant C such that for every H-harmonic function u, for every 1 ≤ i < j ≤ n
and every k ∈ N, for every d, and every a ∈ Bn,

∣

∣∇dLk
i,ju(a)

∣

∣ ≤ C(1 − |a|)−d−n
p

(

∫

B
(

a,(1−|a|2)ε
)

∣

∣Lk
i,ju(x)

∣

∣

p
dx

)
1
p

.(3.4)

The same applies to (−∆σ)γ (γ ∈ R+).
Let ∇̃ku be defined by

{XN qu : X =

p
∏

l=1

Lil,jl
, p + q ≤ k},
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then (3.4) implies that Lemma 3.3 stays true if we replace Nk by ∇̃ku. But, outside

a fixed neighborhood V of 0,
∣

∣

∣∇̃ku
∣

∣

∣ ≃
∣

∣∇ku
∣

∣, thus for every a ∈ Bn \ V

∣

∣∇d∇ku(a)
∣

∣ ≤ C(1 − |a|)−d−n
p

(

∫

B
(

a,(1−|a|2)ε
)

∣

∣∇ku(x)
∣

∣

p
dx

)
1
p

.

As for a ∈ V one can apply Theorem 3.2 on B
(

a, (1− |a|2)ε
)

with constants indepen-
dent of a, we get the previous inequality on V (recall that ∇k means the set of all
derivatives of order less than k). 2

3.2. First consequences of the mean-value inequalities

As an immediate consequence of Lemma 3.3, we obtain the following:

Corollary 3.5. Let 0 < α < β < 1, k, d ∈ N. Then there exists a constant c such
that for every H-harmonic function u,

Mα

(

(1 − |z|)d|∇dNku|
)

≤ cMβ(Nku).

Proof. This follows from Lemma 3.3 and the fact that if α < β and if ε is small
enough then, for every ξ ∈ Sn−1 and every a ∈ Aα(ξ), B(a, (1 − |a|2)ε) ⊂ Aβ(ξ). 2

Let l ∈ R and f a function defined on Bn. Define Ilf by

Ilf(rζ) =

∫ r

0

f(tζ)(1 − t)l−1dt, 0 < r < 1, ζ ∈ Sn−1.

If l ∈ R+, Il is a “fractional integration operator” of order l in the normal direction.
In particular, if l is a positive integer and N lh = g, then

|h| ≤ C

[

Il|g| + sup
j≤l−1,|z|≤ε

∣

∣∇jh(z)
∣

∣

]

.(3.5)

The following lemma is a direct consequence of the mean-value inequalities and its
proof follows the main lines of the upper half-line case (see [19] pages 214–216) or the
M-harmonic function case in [2].

Lemma 3.6. For 0 < α < β < 1, γ > −n
2 , l ∈ R and d ∈ N, there exists a constant

C such that, for every ζ ∈ Sn−1, and for every H-harmonic function u
∫

Aα(ζ)

[

Il

∣

∣∇dNku
∣

∣(z)
]2

(1 − |z|)2γdz ≤ C

∫

Aβ(ζ)

∣

∣Nku(z)
∣

∣

2
(1 − |z|)2(l+γ−d)dz.

From this and Formula (3.5), one deduces the following (see [2] for the proof in case
of M-harmonic functions) :



18 Math. Nachr. xxx (200x)

Lemma 3.7. For 0 < α < β < 1, γ > −n
2 and d ∈ N, there exists a constant C

such that, for every ζ ∈ Sn−1, and every H-harmonic function u,
∫

Aα(ζ)

∣

∣∇du(z)
∣

∣

2
(1 − |z|)2γdz ≤ C

∫

Aβ(ζ)

∣

∣Nku(z)
∣

∣

2
(1 − |z|)2(k+γ−d)dz

+C sup|z|<ε

∣

∣∇k−1u(z)
∣

∣

2
.

3.3. Maximal Characterization of Hp

From the definition of M[u] and Mα[u], it is obvious that M[u] ≤ Mα[u], in partic-
ular, if Mα[u] ∈ Lp(Sn−1) then M[u] ∈ Lp(Sn−1). The next proposition claims that
the converse is true for H-harmonic functions as well as for their normal derivatives.
In particular, this proves the equivalence of statements 1 and 3 of Theorem A.

Proposition 3.8. For 0 < α < 1, 0 < p < +∞, for every integer k ≥ 0 and for
every H-harmonic function u, the following are equivalent :

1. M
[

Nku
]

∈ Lp(Sn−1),

2. Mα

[

Nku
]

∈ Lp(Sn−1).

Moreover, there exists C = Cα,p such that for every H-harmonic function u,
∥

∥M
[

Nku
]∥

∥

p
≤
∥

∥Mα

[

Nku
]∥

∥

p
≤ C

∥

∥M
[

Nku
]∥

∥

p
.

Proof. According to Lemma 3.3, for a ∈ Aα(ζ)

∣

∣Nku(a)
∣

∣

p

2 ≤ C(1 − |a|)−n

∫

B
(

a,2(1−|a|)ε
)

∣

∣Nku(ω)
∣

∣

p

2 dω.

Integrating in polar coordinates ω = rη, we see that η ∈ B
(

ζ, c(1−|a|)
)

and bounding
∣

∣Nku(ω)
∣

∣ by M
[

Nku
]

(η) we get

∣

∣Nku(a)
∣

∣

p

2 ≤ C(1 − |a|)−n

∫

B
(

ζ,c(1−|a|)
)

∩Sn−1

[

M
[

Nku
]

(η)
]

p

2 dσ(η)

×
∫ |a|+2(1−|a|)ε

|a|−2(1−|a|)ε

rn−1dr

≤ C(1 − |a|)−n+1

∫

B
(

ζ,c(1−|a|)
)

∩Sn−1

[

M
[

Nku
]

(η)
]

p

2 dσ(η).

But σ
[

B
(

ζ, c(1 − |a|)
)

∩ Sn−1
]

∼ (1 − |a|)n−1 therefore

Mα

[

Nku(ζ)
]

p
2 ≤ CMHL

[

M
[

Nku
]

p
2

]

(ζ)

where MHL is Hardy-Littlewood’s maximal function on Sn−1. We just have to use
the fact that MHL is bounded L2(Sn−1) 7→ L2(Sn−1) to complete the proof. 2

This proposition, whose proof is directly inspired from the Rn+1
+ case in [9] depends

only on the mean-value inequalities (Lemma 3.3). Thus, it remains true if we replace
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Nk by ∇k or by Lk
i,j (thus also by (−∆σ)k/2) as long as we replace Lemma 3.3 by

Proposition 3.4 or by Inequality (3.4).
Further, this proposition implies that the opening α of the non-tangential approach

region plays no role. In the sequel, we will appeal to this classical fact with no further
reference.

3.4. Characterization by Littlewood-Paley’s g-function

Due to the mean-value inequality for H-harmonic functions, one immediately gets :

Lemma 3.9. For every α with 0 < α < 1 there exists a constant C such that for
every H-harmonic function u and every ξ ∈ Sn−1,

gN [u](ξ) ≤ CSN
α [u](ξ) and g[u](ξ) ≤ CSα[u](ξ).

Proof. Simply adapt the Rn+1
+ case from [19]. 2

Theorem 3.10. Let 0 < p < +∞. For every H-harmonic function u, the following
are equivalent :

1. g[u] ∈ Lp(Sn−1),

2. gN [u] ∈ Lp(Sn−1),

3. SN
α [u] ∈ Lp(Sn−1) for some α, 0 < α < 1 (thus for every α).

4. Sα[u] ∈ Lp(Sn−1) for some α, 0 < α < 1 (thus for every α).

Proof. The implications 1⇒2 and 4⇒3 are trivial. The implication 4⇒1 (and 3⇒2)
follow from Lemma 3.9. Further, the implication 3⇒4 follows directly from Lemma
3.7. The proof will be complete once we have established 2⇒3.

Let H be the Hilbert space defined byH =

{

ϕ : [0, 1] 7→ C : ‖ϕ‖2H =

∫ 1

0

|ϕ(s)|2(1 − s2)ds < +∞
}

.

Let u be an H-harmonic function such that gN [u] ∈ Lp(Sn−1). For 0 < s < 1 define
U(rζ) = Nu(rsζ), then

‖U(rζ)‖H = ‖s 7→ Nu(rsζ)‖H =

∫ 1

0

|Nu(rsζ)|2(1 − s2)ds

≤
∫ r

0

|Nu(sζ)|2
(

1 −
(s

r

)2
)

ds

r

=
1

r3

∫ r

0

|Nu(sζ)|2(r2 − s2)ds

≤ CgN [u](ζ)2
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so

M[U ](ξ) = sup
0<r<1

‖U(rζ)‖H ≤ CgN [u](ζ) ∈ Lp(Sn−1).

Next, it is easy to see that the equivalence of the Lp norms of the area integral and
the non-tangential maximal functions extends to Hilbert space valued H-harmonic
functions. The key fact is that equality D|u|2 = 2(1 − |x|2)2|∇u|2 is valid in Hilbert
spaces. It follows that, for every 0 < p < +∞ there exists C such that

‖Sα[U ]‖p ≤ C‖M[U ]‖p ≤ C′
∥

∥gN [u]
∥

∥

p
.(3.6)

Write Sα[U ](ζ) with the parameterization r(ξ)ξ of ∂Aα(ζ) :

Sα[U ](ζ)2 =

∫Sn−1

∫ r(ξ)

0

∫ 1

0

|∇Nu(rsξ)|2(1 − s2)sds(1 − r2)2−nrn−1drdσ(ξ)

and, with the change of variables t = rs, we get, changing order of integration

Sα[U ](ζ)2 =

∫Sn−1

∫ r(ξ)

0

∫ r(ξ)

t

|∇Nu(tξ)|2
(

1 −
(

t

r

)2
)

t

r
(1 − r2)2−nrn−2drdtdσ

≥
∫Sn−1

∫ r(ξ)

0

|∇Nu(tξ)|2
∫ r(ξ)

t

(r − t)(1 − r)2−ndrtn−3dtdσ(ξ)

But, if 1 − t > 2
(

1 − r(ξ)
)

∫ r(ξ)

t

(r − t)(1 − r)2−ndr =

∫ 1−t

1−r(ξ)

s2−n(1 − t − s)ds ≥ C(1 − t)4−n

thus there exists β < α such that

Sα[U ](ζ)2 ≥
∫

Aβ(ζ)

∣

∣N2u(tξ)
∣

∣

2
(1 − t)4−ntn−1dtdσ(ξ)

≥ C

∫

Aβ′ (ζ)

[

I1|N2u|(tξ)
]2

(1 − t)2−ntn−1dtdσ(ξ)

with β′ < β according to Lemma 3.6. Using (3.5), we get

Sα[U ](ζ)2 + C sup
|z|≤ε

|Nu(z)| ≥ CSN
β′ [u](ζ)2.

Equation (3.6), allows to conclude that 2⇒3. 2

4. Characterization of Hardy-Sobolev spaces

In this section, we prove Theorems B and C.
In these theorems, that M can be replaced by Mα is a direct consequence of the

mean-value inequality (see Proposition 3.8 and the remarks following it). We will need
the following.
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Figure 3: The set Ak (here with k even)

Notation : For an integer k ≥ 1, write Ak for the set of indicesAk = {(i, j) ∈ N×N : 0 ≤ i ≤ k, 0 ≤ j ≤ k + 1, j even, 1 ≤ i + j ≤ k + 1}.

Lemma 4.1. For every k ≥ 1, there exist two families of polynomials
(

P
(k)
j

)

j=1...[ k
2 ]

and
(

Q
(k)
i,j

)

(i,j)∈Ak
such that for every H-harmonic function u and every k,

(1− r2)Nk+1u + 2(n− 1− k)Nku =

[ k
2 ]
∑

j=1

P
(k)
j (r)∆j

σu + (1− r2)
∑

(i,j)∈Ak

Q
(k)
i,j (r)N i∆

j

2
σ u.

Moreover, the polynomials P
(k)
[k/2] and Q

(k)

0,[k+1

2 ]
are not zero on the boundary.

Proof. Using the radial-tangential expression of D, we can see that if Du = 0 then

(1 − r2)N2u + 2(n − 2)Nu = (1 − r2)[(n − 2)Nu − ∆σu].(4.1)

The lemma is thus verified for k = 1 with Q
(1)
1,0(r) = n − 2, Q

(1)
0,2(r) = −1.

Applying Nk−1 to equation (4.1) leads to

(1 − r2)Nk+1u +
(

n − 1 − k
)

Nku = r2
k−1
∑

l=1

a
(k)
l N lu + r2

k−2
∑

l=0

b
(k)
l N l∆σu

+(1 − r2)
[

(n − 2k)Nku − Nk−1∆σu
]

and we conclude with the induction hypothesis. 2

The equivalence of 1a and 1b as well as the equivalence of 2a and 2b in Theorem C
have already been shown. We will now prove the remaining of this theorem.
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Theorem 4.2. Let 0 < α < 1, 0 < p < +∞, and k ≤ n − 2 be an integer. The
following are equivalent :

1. If k is even

(a) Mα

[

N ju
]

∈ Lp(Sn−1), for every integer j with 0 ≤ j ≤ k,

(b) Mα

[

(−∆σ)ju
]

∈ Lp(Sn−1), for every integer j with 0 ≤ j ≤ k
2 ,

(c) Mα

[

∇ju
]

∈ Lp(Sn−1) for every integer j with 0 ≤ j ≤ k.

2. If k is odd

(a) Mα

[

N ju
]

∈ Lp(Sn−1), for every integer j with 0 ≤ j ≤ k,

(b) Mα

[

(−∆σ)ju
]

∈ Lp(Sn−1), for every integer j with 0 ≤ j ≤ k−1
2 , and

Mα

[

(1 − r2)(−∆σ)
k+1

2 u
]

∈ Lp(Sn−1).

Proof of Theorem 4.2. The theorem is of course true for k = 0. Assume the result
holds up to rank k − 1.

Assume first that k is even. The implication (1c)⇒(1b) is obvious, so let us now
show that (1b)⇒(1a).

Let u be an H-harmonic function that satisfies (1b), and let

v = 2(n − 1 − k)Nku + (1 − r2)Nk+1u.(4.2)

According to Lemma 4.1,

v(rζ) =

[ k
2 ]
∑

j=1

P
(k)
j (r)∆j

σu + (1 − r2)
∑

(i,j)∈Ak

Q
(k)
i,j (r)N i∆

j
2
σ u.

Then, with hypothesis (1b), for 0 ≤ j ≤ k
2 , Mα

[

∆j
σu
]

∈ Lp thus

Mα







[ k
2 ]
∑

j=1

P
(k)
j (r)∆j

σu






∈ Lp(Sn−1).

On the other hand, Corollary 3.5 implies that

Mα



(1 − r2)
∑

(i,j)∈Ak

Q
(k)
i,j (r)N i∆

j
2
σ u



 ≤ C
∑

(i,j)∈Ak−1∪(0,0)

Mβ

[

N i∆
j
2
σ u

]

∈ Lp(Sn−1),

by induction hypothesis. We deduce from it that Mα[v] ∈ Lp(Sn−1). But, solving the
differential equation (4.2), we get

Nku(rζ) =

(

1 − r2

r2

)n−1−k ∫ r

0

v(tζ)
t2n−3−2k

(1 − t2)n−k
dt(4.3)
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thus Mα

[

Nku
]

∈ Lp(Sn−1) since k ≤ n − 2.

Assume now that u satisfies (1a) i.e. that Mα

[

N ju
]

∈ Lp(Sn−1) for j ≤ k and let

us show that Mα

[

∆j
σu
]

∈ Lp(Sn−1) for j ≤ k
2 . Let 1 > β > α.

According to the induction hypothesis, for j ≤ k
2 − 1, Mα

[

∆j
σu
]

∈ Lp(Sn−1) then

Mα





k
2
−1
∑

j=1

P
(k)
j (r)∆j

σu



 ∈ Lp(Sn−1).

Further, note that for a regular function ϕ,

Mα

[

(1 − r2)ϕ
]

≤ C
(

Mα

[

(1 − r2)2Nϕ
]

+ |ϕ(0)|
)

.(4.4)

Assume now that (i, j) ∈ Ak so that k − i + j ≥ 1, iterating inequality (4.4), we get

Mα

[

(1 − r2)Q
(k)
i,j (r)N i∆

j
2
σ u

]

≤ CMα

[

(1 − r2)N i∆
j
2
σ u

]

≤ CMα

[

(1 − r2)k−i+1Nk∆
j

2
σ u

]

+ C

k−1
∑

j=0

∣

∣∇ju(0)
∣

∣

≤ C

k
∑

j=0

Mβ

[

N ju
]

,

by Corollary 3.5. So, C

k
∑

j=0

Mβ

[

N ju
]

∈ Lp(Sn−1), thus

Mα





∑

(i,j)∈Ak

(1 − r2)Q
(k)
i,j (r)N i∆

j
2
σ u



 ∈ Lp(Sn−1).

We then get from Lemma 4.1 that Mα

[

P
(k)
k/2(r)(−∆σ)k/2u

]

∈ Lp(Sn−1), and as P
(k)
k/2

is not zero on the boundary, Mα

[

(−∆σ)k/2u
]

∈ Lp(Sn−1). So (1a) and (1b) are
equivalent.

Let us now show that (1a)+(1b) implies (1c). It is enough to show this implication
for X a differential operator of the form X = N jY with Y a product of k−j operators
of the form Lp,q. Since (1a) holds, we can assume that j < k. Let

v = (1 − r2)N j+1u + 2(n − 1 − j)N ju

and compose with Y, it results thatYv = (1 − r2)N j+1Yu + 2(n − 1 − j)N jYu.

Using as previously formula (4.3), we see that

Mα[Xu] ∈ Lp(Sn−1)

which completes the proof in the case k is even. ⋄
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Assume now that k is odd. The proof of (2b)⇒(2a) is similar to the case k even.
The converse is again based on Lemma 4.1. According to the induction hypothesis,
Mα

[

∆l
σu
]

∈ Lp(Sn−1) for 0 ≤ l ≤ k−1
2 =

[

k
2

]

so that

Mα







[ k
2 ]
∑

j=1

P
(k)
j (r)∆j

σu






∈ Lp(Sn−1).

One has, as before,

Mα



(1 − r2)
∑

(i,j)∈Ak\(0,k+1)

Q
(k)
i,j (r)N i∆

j

2
σ u



 ∈ Lp(Sn−1)

and that Mα

[

(1 − r2)Nk+1
]

∈ Lp(Sn−1).
Combining all this, we get that

Mα

[

(1 − r2)Q
(k)
0,k+1(r)∆

k+1

2
σ u

]

∈ Lp(Sn−1)

and as Q
(k)
0,k+1 is non-zero on the boundary, we finally get

Mα

[

(1 − r2)∆
k+1

2
σ u

]

∈ Lp(Sn−1)

and (a) and (b) are equivalent. 2

Proof of Theorem B. First, (4) is an immediate consequence of (1). For the con-
verse, assume Property 4, that is Mα[(−∆σ)k/2u] ∈ Lp(Sn−1). We want to prove
that

Mα[Nk−lXu] ∈ Lp(Sn−1)(4.5)

for any 0 ≤ l ≤ k and any operator X of the form X that is the product of l of the
form Li,j .

But, according to Remark 2.9, we also have Mα[Y u] ∈ Lp(Sn−1) for any operator
Y of the form Y =

∏q
p=1 Lip,jp

for 0 ≤ q ≤ k.
It follows that Xu satisfies Conditions (1b) or (2b) of Theorem 4.2 depending on

the parity of k − l and the estimate (4.5) follows from that theorem.
We will now complete the proof of Theorem B by establishing the area integral

characterizations.
The equivalence of Assertions 5 and 6 as well as the equivalence of Assertions 7, 8

and 9 are direct consequences of Lemma 3.7 (with γ = −n
2 + 1), thus hold without

restriction on k.
Further, as

∣

∣

∣N(−∆σ)k/2u
∣

∣

∣ ≤ CIk

∣

∣

∣Nk+1(−∆σ)k/2u
∣

∣

∣+ sup
0≤j≤2k,|z|≤ε

∣

∣∇ju
∣

∣,

so, Lemma 3.7 and the mean-value inequality imply that

SN
α

[

(−∆σ)k/2u
]

≤ SN
β

[

Nku
]

+ ‖u‖Hp ,
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so that Assertion 8 implies Assertion 6.
Let us now prove that if, for 0 ≤ j ≤ k

2 , Sα

[

∆j
σu
]

∈ Lp(Sn−1), then SN
α

[

Nku
]

∈
Lp(Sn−1). The proof goes according to the method developped for the equivalence of
maximal functions.

For simplicity, we will restrict our attention to the case k = 1. In order to estimate
SN

α [Nu], we have to estimate Nu. While trying to use the previous method, Lemma
4.1 for k = 2 does not give a satisfying estimate. However, we can obtain the desired
estimate as follows. Denote by v the function

v = 2(n − 2)Nu + (1 − r2)N2u,

then Nv = 2(n − 3)N2u + (1 − r2)N3u + 2(1 − r2)N2u and write this in the form
Nv = w + 2(1 − r2)N2u. As before, solving the differential equation (1 − r2)N3u +
2(n − 3)N2u = w, we have

N2u(rζ) =

(

1 − r2

r2

)n−3 ∫ r

0

w(tz)t2(n−3)+1(1 − t2)2−ndt

so that
∣

∣N2u(rζ)
∣

∣ ≤ C(1 − r2)n−3I3−n(|w|).(4.6)

On the other hand, by Lemma 4.1 for k = 1, v = (n− 2)(1− r2)Nu− (1− r2)∆σu, so
Nv = (n − 2)(1 − r2)N2u − (1 − r2)N∆σu + 2r2∆σu − 2r2(n − 2)Nu.

Recall that |f | ≤ CI1(
∣

∣N1f
∣

∣) + C sup|z|<ε,j≤1

∣

∣∇jf
∣

∣. One then gets

|w| ≤ |Nv| + 2(1 − r2)
∣

∣N2u
∣

∣

≤ C
(

I1

(

|N∆σu|
)

+ I1

(∣

∣N2u
∣

∣

)

+ (1 − r2)
∣

∣N2u
∣

∣+ (1 − r2)|N∆σu|
)

+ sup
0≤j≤3,|z|≤ε

∣

∣∇ju
∣

∣.

Inserting this in (4.6), and invoking the facts that Il

(

(1− r2)|f |
)

= Il+1(|f |) and that
Il(Is|f |) ≤ CIl+s(|f |), one gets

∣

∣N2u(rζ)
∣

∣ ≤ C(1 − r2)n−3

(

I4−n(|N∆σu|) + I4−n(
∣

∣N2u
∣

∣) + sup
|z|<ε,0≤j≤3

∣

∣∇ju
∣

∣

)

.

We are now in position to estimate SN
α [Nu] :

SN
α [Nu](ζ)2 =

∫

Aα(ζ)

∣

∣N2u(x)
∣

∣

2
(1 − |x|)2−ndx

≤ C

(

∫

Aα(ζ)

[I4−n(|N∆σu|)]2(1 − |x|2)n−4dx

+

∫

Aα(ζ)

[

I4−n(
∣

∣N2u
∣

∣)
]2

(1 − |x|2)n−4dx + sup
|z|<ε,0≤j≤3

∣

∣∇ju
∣

∣

2

)

A further appeal to Lemma 3.6, with l = 4 − n, d = 0, k = 2 and γ = n−4
2 leads to

∫

Aα(ζ)

[

I4−n(
∣

∣N2u
∣

∣)
]2

(1 − |x|2)n−4dx ≤ C

∫

Aβ(ζ)

∣

∣N2u
∣

∣

2
(1 − |x|2)4−ndx.
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A last appeal to Lemma 3.6, with l = 4 − n, d = 0, k = 1 and γ = n−4
2 leads to

∫

Aα(ζ)
[I4−n(|N∆σu|)]2(1 − |x|2)n−4dx ≤ C

∫

Aβ(ζ)
|N∆σu|2(1 − |x|2)4−ndx

≤ CSN
γ

[

(−∆σ)
1
2 u
]

,

by the mean-value properties. As the only part that matters in this last integral is the
part near to the boundary, we will cut it into two parts. Let κ be a constant that we
will fix later. Then
∫

Aβ(ζ)

∣

∣N2u
∣

∣

2
(1 − |x|2)4−ndx ≤

∫

Aβ(ζ)∩B(0,κ)

∣

∣N2u
∣

∣

2
(1 − |x|2)4−ndx

+

∫

Aβ(ζ)∩
(Bn\B(0,κ)

)

∣

∣N2u
∣

∣

2
(1 − |x|2)4−ndx

≤ C sup
|z|≤κ,0≤j≤3

∣

∣∇ju
∣

∣

+(1 − κ2)2
∫

Aβ(ζ)

∣

∣N2u
∣

∣

2
(1 − |x|2)2−ndx.

Gathering the above estimates, we finally get

SN
α [Nu](ζ)2 ≤ CSN

γ

[

(−∆σ)
1
2 u
]

(ζ)2 + C(1 − κ2)2Sβ [Nu](ζ)2

+C sup|z|≤κ,0≤j≤3

∣

∣∇ju
∣

∣.
(4.7)

Note that this inequality depends only on the mean-value inequality. Now, consider
the function on Bn defined by uδ(x) = u(δx) (0 < δ < 1) and note that uδ satisfies

[

(1 − δ2r2)2∆ + 2(n − 2)δ2(1 − δ2r2)N
]

uδ = 0

so that, repeating the arguments of section 3.1, we see that uδ satisfies the same mean-
value inequalities as u, with constants independent on δ. In particular, one can replace
u in (4.7) by uδ and get

SN
α [Nuδ](ζ)2 ≤ CSN

γ

[

(−∆σ)
1
2 uδ

]

(ζ)2 +C(1−κ2)2SN
β [Nuδ](ζ)2 +C sup

|z|≤κ,0≤j≤3

∣

∣∇juδ

∣

∣

with constants independent on 1
2 < δ < 1. Then taking Lp(Sn−1) norms, one gets

∥

∥SN
α [Nuδ]

∥

∥

p
≤ C

∥

∥

∥
SN

γ

[

(−∆σ)
1
2 uδ

]∥

∥

∥

p
+ C(1 − κ2)

∥

∥

∥
SN

β [Nuδ]
∥

∥

∥

p
+ C‖u‖Hp

≤ C
∥

∥

∥
SN

γ

[

(−∆σ)
1
2 u
]∥

∥

∥

p
+ C′(1 − κ2)

∥

∥SN
α [Nuδ]

∥

∥

p
+ C‖u‖Hp ,

since, as is well known (see Proposition 4 of [4]), that the Lp norms of SN
α and SN

β are

equivalent. It is now enough to choose κ such that C′(1 − κ2) = 1
2 , then

∥

∥SN
α [Nuδ]

∥

∥

p
≤ 2C

∥

∥

∥SN
γ

[

(−∆σ)
1
2 u
]∥

∥

∥

p
+ 2C‖u‖Hp .

We then conclude by monotone convergence when δ → 1. 2
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5. Lipschitz spaces

In this section, we transpose to hyperbolic-harmonic extensions the following well
known characterization of Lipschitz spaces Λα(Sn−1) through harmonic extensions
(see [11]): a bounded function f is in Λα(Sn−1) if and only if its Euclidean harmonic
extension v = Pe[f ] satisfies the following property for some integer k > α

sup
z∈Bn

(1 − |z|)k−α|Nkv(z)| < ∞.(5.1)

Moreover, this quantity is equivalent to the Lipschitz norm of f and, if (5.1) holds for
some k > α, it holds for any k > α.

To be more precise, let us recall first the definitions of the Lipschitz spaces.

Definition 5.1. For 0 < α < 1, Λα(Sn−1) is defined as the space of bounded
functions f on Sn−1 for which there exists a constant C > 0 such that |f(ζ) − f(η)| ≤
C|ζ − η|α for all η, ζ ∈ Sn−1.

For k < α < k + 1, k ∈ N, Λα(Sn−1) is defined as the space of bounded functions f
on Sn−1 such that every derivative of f of order k belongs to Λα−k(Sn−1).

When α is an integer, Λα(Sn−1) is defined by real interpolation and the correspond-
ing Lipschitz spaces are usually designed as Zygmund classes.

Remark 5.2. It is well known that the Zygmund classes of order k ∈ N are larger
than the Hölder classes Hk. These are the classes of Ck−1 functions f such that, for
every derivative X of order k − 1, |Xf(ζ) − Xf(η)| ≤ C|ζ − η|, for some constant C
that does not depend on ζ, η.

We prove the following result for hyperbolic extensions.

Theorem 5.3. Let α > 0 and assume further that α < n − 1 if n is odd. Let f be
a bounded function on Sn−1. The following are equivalent

i. f ∈ Λα(Sn−1).

ii. There exists an integer k > α, and a constant C > 0 such that, for every z ∈ Bn,

(1 − |z|)k
∣

∣NkPh[f ](z)
∣

∣ ≤ C(1 − |z|)α.(5.2)

Remark 5.4. It is easy to prove that condition (ii) implies that for any integer
j > α, one has

(1 − |z|)j
∣

∣N jPh[f ](z)
∣

∣ ≤ C(1 − |z|)α.

For j > k, this follows from the mean-value property (3.3) and for j < k from radial
integration. One can show as well that the analogous estimate holds for any derivative
of order j > α: for any differential operator X of order j,

(1 − |z|)j |XPh[f ](z)| ≤ C(1 − |z|)α.
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As a consequence, condition (ii) implies that, if Ph[f ] satisfies (5.2), then Ph[f ] ∈
Λα(Bn). This in turn implies that f ∈ Λα(Sn−1).

Proof. According to the remark, it is enough to prove that (i) implies (ii) with
k = [α] + 1.

Assume first that n is even and let f ∈ Λα(Sn−1). Then, for any j > α

(1 − |z|)j
∣

∣N jPe[f ](z)
∣

∣ ≤ C(1 − |z|)α.

Next, Formula (2.1) implies

(1 − |z|)k
∣

∣NkPh[f ](z)
∣

∣ =

n/2−1
∑

j=0

k
∑

l=0

O
(

(1 − |z|)k+(j+l−k)+N j+lPe[f ](z)
)

and each of these terms has the desired behaviour, thus we have established (ii).
The case n odd will be obtained in a different way (which also gives the result for n

even). However, the argument below will only be valid for α < n − 1.
Let f ∈ Λα(Sn−1), with α < n − 1. Let u = Ph[f ]. We will prove in two steps that

u satisfies the estimate (5.2). The first step deals with the case 0 < α < 2, the general
case will follow.

First Step. If 0 < α < 2 then

N2u(z) = O
(

(1 − |z|)α−2
)

.

For ζ, ξ ∈ Sn−1, denote by Sζξ the symmetric of ξ with respect to ζ on Sn−1. In
other words, we have Sζξ = 2〈ξ, ζ〉ζ − ξ. It follows from the definition of Λα(Sn−1)
that |2f(ζ) − f(ξ) − f(Sζξ)| ≤ ||f ||α|ζ − ξ|α.

Note that, since Ph(rξ, .) has integral 1 on Sn−1, we have

∫Sn−1

(

r
∂

∂r

)2Ph(rξ, ζ)dσ(ζ) = 0.

Using this fact and the symmetry under rotations of Ph(rξ, .), we get that
∣

∣

∣

∣

∣

(

r
∂

∂r

)2

u(rξ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Sn−1

(

r
∂

∂r

)2Ph(rξ, ζ)f(ζ)dσ(ζ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫Sn−1

(

r
∂

∂r

)2Ph(rξ, ζ)[2f(ζ) − f(ξ) − f(Sζξ)]dσ(ζ)

∣

∣

∣

∣

∣

.

Further, a direct computation shows that
∣

∣

∣

∣

∣

(

r
∂

∂r

)2Ph(rξ, ζ)

∣

∣

∣

∣

∣

≤ C(1 − r)n−3

(

(1 − r) + |ξ − ζ|)
)2(n−1)

.

Combining these two facts, we get
∣

∣

∣

∣

∣

(

r
∂

∂r

)2

u(rξ)

∣

∣

∣

∣

∣

≤ C||f ||α(1 − r)n−3

∫Sn−1

|ξ − ζ|α
(

(1 − r) + |ξ − ζ|
)2(n−1)

dσ(ζ).
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Now, cutting the integral into two parts |ξ − ζ| > c(1 − r) and |ξ − ζ| < c(1 − r), we
get |N2u(rξ)| ≤ C||f ||α(1 − r)α−2. This completes the proof of the case 0 < α < 2.

Second Step. If α ≥ 2, then
∣

∣N [α]+1u
∣

∣ ≤ C(1 − |z|)α−[α]−1.
First, to simplify the notations, we denote by L the set of vector fields Lij , 1 ≤ i <
j ≤ n, and by Ll the set of vector fields consisting of the products of l elements of L.

For any 0 < α′ < α and any integer l < α′, Llf ⊂ Λα′−l(Sn−1). For a fixed integer
l ≤ [α] − 1, let α′ = l + α − [α] + 1 so that α′ − l ∈ [1, 2[. As L and D commute,
Llu = Ph(Llf) (with the obvious abuse of notation) so that, from the first part of the
proof, we conclude that

∣

∣N2Llu(z)
∣

∣ ≤ C(1 − |z|)α−[α]−1.

But,

(1 − |z|)2
∣

∣N2Ll+2u(z)
∣

∣ = (1 − |z|)2
∣

∣L2N2Llu(z)
∣

∣ ≤ C(1 − |z|)2
∣

∣∇2N2Llu(z)
∣

∣

so that, by the mean-value inequality (3.3), we get

(1 − |z|)2
∣

∣N2Ll+2u(z)
∣

∣ ≤ C(1 − |z|)α−[α]−1.

Integrating twice in the radial direction gives
∣

∣Ll+2u
∣

∣ ≤ C(1 − |z|)α−[α]−1 (since α <
[α] + 1).

The proof of the theorem is therefore completed with the next lemma.

Lemma 5.5. Let A > 0 and k be an integer such that k + 2 < A+ (n− 1). Let u be
a H-harmonic function in Bn and assume that u(z) = O

(

(1 − |z|)−A
)

. The following
are equivalent.

1.
∣

∣Nk+2u(z)
∣

∣ = O
(

(1 − |z|)−A
)

,

2. for l = 2, . . . , k + 2,
∣

∣Llu(z)
∣

∣ = O
(

(1 − |z|)−A
)

.

Proof of Lemma 5.5. The proof that (1) implies (2) is classical as pointed out in
the remark after the statement of the theorem. We will now prove the converse by
induction on k.

Assume first that k = 0. By Lemma 4.1, (1 − |z|2)N3u + 2(n − 3)N2u is equal to

O(1)∆σu + O(1)(1 − |z|2)[N∆σu + N2u + ∆σu + Nu].

As ∆σu =
∑L2

iju, Assumption 2 gives ∆σu(z) = O
(

(1 − |z|)−A
)

. The mean-value

property then implies that (1− |z|)|N∆σu(z)| = O
(

(1− |z|)−A
)

. From the hypothesis

u(z) = O
(

(1− |z|)−A
)

and the mean-value property, we also get that (1− |z|)|Nu(z)|
and (1 − |z|)2

∣

∣N2u(z)
∣

∣ are O
(

(1 − |z|)−A
)

. Summarizing these estimates, we get

(1 − |z|2)N3u(z) + 2(n − 3)N2u(z) = O
(

(1 − |z|)−A−1
)

.

We thus get a differential equation of the form (1 − r2)N3u + 2(n − 3)N2u = w
with w(z) = O

(

(1 − |z|)−A−1
)

. Solving it as in (4.2)-(4.3), we get the estimate

N2u(z) = O
(

(1 − |z|)−A−1
)

, since n − 3 + A > 0.
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Bootstraping the argument and re-estimating w, we then get w = O
(

(1 − |z|)−A
)

from which we deduce that N2u(z) is in fact O
(

(1−|z|)−A
)

. This completes the proof
in the case k = 0.

Consider now the case k ≥ 1. Assume that k + 2 < A + (n− 1) and that the lemma
is proved for any integer k′ ≤ k − 1.

As before, it suffices to show that

(1 − |z|2)Nk+3u + 2(n − 3 − k)Nk+2u = O
(

(1 − |z|2)−A
)

and to solve the differential equation as in (4.2-4.3) to get the result (since here n −
3 − k + A > 0). By Lemma 4.1, this quantity equals

O(1)

[(k+2)/2]
∑

j=1

∆j
σu + O(1)(1 − |z|2)

∑

0≤i≤k+2

0≤2j≤k+3, 1≤i+2j≤k+3

N i∆j
σu.

The first sum is by assumption equal to O
(

(1−|z|2)−A
)

. By the induction hypothesis,

one has
∣

∣Nk+1u(z)
∣

∣ = O
(

(1 − |z|)−A
)

. As usual, it allows to say that any derivative
of u of order less than k + 1 has the same bound. By the mean-value inequality, we
further get that any derivative of order k + 2 is an O

(

(1 − |z|)−A−1
)

. It thus suffices
to consider only the term of order k + 3 in the second sum.

We split the corresponding remaining terms into two parts:

O(1)(1 − |z|2)N2∆(k+1)/2
σ u + O(1)(1 − |z|2)

∑

0≤i≤k+2,i6=2

0≤2j≤k+3, i+2j=k+3

N i∆j
σu.

Note that the first term only appears when k is odd. For this term, we write (1 −
|z|2)

∣

∣

∣N2∆
(k+1)/2
σ u

∣

∣

∣ ≃ (1 − |z|2)
∣

∣LN2Lku
∣

∣ and we bound it by the mean-value of

N2Lku. Now, we apply the induction hypothesis to the H-harmonic function Lku
to get that it is O

(

(1 − |z|2)−A
)

.
Using the mean-value property, we get that the second sum is bounded (up to a

constant) by the mean-value of
∑

1≤i≤k+2,i6=2

0≤2j≤k+3, i+2j=k+3

∣

∣N i−1∆j
σu
∣

∣+
∣

∣Lk+2u
∣

∣.

Each of these terms is again O
(

(1 − |z|2)−A
)

, either by assumption (2) or by the
induction hypothesis. This completes the proof of the lemma. ⋄

The proof of Theorem 5.3 is thus complete. 2

As a conclusion, let us emphasize that the restriction on α can not be removed in
odd dimension:

Proposition 5.6. Assume that n is odd. Then,

1. if f ∈ Hn−1(Sn−1), then (1 − |z|)|NnPh[f ]| is bounded;

2. there is an f ∈ Λn−1(Sn−1), such that (1 − |z|)|NnPh[f ]| is unbounded.
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Remark 5.7. We know from [13, 14] that if (1 − |z|2)NnPh[f ] = o(1) then f is
constant. Therefore this theorem gives the optimal Lipschitz-regularity of H-harmonic
functions in odd dimensional hyperbolic balls.

Proof. Assume that f ∈ Hn−1. Then there is a constant C > 0 such that f satisfies
|Xf(ζ)−Xf(η)| ≤ C|ζ−η| for any differential operator X ∈ Ln−2 and any η, ζ ∈ Sn−1.

This implies that ∆
n−1

2
σ Ph[f ] is bounded.

Set u = Ph[f ] and note that, when n is odd, Lemma 4.1 leads to,

(1 − |z|2)Nnu = P
(n−1)
(n−1)/2(r)∆

(n−1)/2
σ u + O(1)

∑(n−3)/2
j=1 ∆j

σu

+O(1)(1 − |z|2)
∑

0≤i≤n−1

0≤2j≤n, 1≤i+2j≤n

N i∆j
σu.

From f ∈ Cn−2(Sn−1), we get that all terms on the right hand side are bounded,
excepted eventually O(1)(1 − |z|2)N i∆j

σu with i + 2j = n. These may all be written

as O(1)(1 − |z|2)N iPh[∆
n−i
2

σ f ] with i ≤ n − 1. As ∆
n−i
2

σ f ∈ Λi−1(Sn−1), by theorem
5.3, these terms are therefore also bounded.

Let us now prove point 2. Using again Lemma 4.1, if (1− |z|)|NnPh[f ]| is bounded

and f ∈ Λn−1(Sn−1), then ∆
n−1

2
σ Ph[f ] is also bounded. Then, as ∆

n−1

2
σ Ph[f ] =Ph[∆

n−1

2
σ f ], it follows that ∆

n−1

2
σ f is also bounded, by Fatou’s Theorem. But it is

well known that there exists f ∈ Λn−1(Sn−1) such that ∆
n−1

2
σ f is unbounded. 2
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Département de Mathématiques
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