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Summary. We review our recent Michelson-Morley (MM) and Kennedy-Thorndike
(KT) experiment, which tests Lorentz invariance in the photon sector, and report
first results of our ongoing atomic clock test of Lorentz invariance in the matter
sector.

The MM-KT experiment compares a cryogenic microwave resonator to a hy-
drogen maser, and has set the most stringent limit on a number of parameters
in alternative theories to special relativity. In the Robertson-Mansouri-Sexl (RMS)
framework our experiment constrains 1/2 − βMS + δMS = (1.2 ± 2.2) × 10−9 and
βMS − αMS − 1 = (1.6 ± 3.0) × 10−7, which is of the same order as the best re-
sults from other experiments for the former and represents a 70 fold improvement
for the latter. In the photon sector of the general Lorentz violating standard model
extension (SME), our experiment limits 4 components of the κ̃e− parameter to a
few parts in 10−15 and the three components of κ̃o+ to a few parts in 10−11. This
corresponds to an improvement by up to a factor 10 on best previous limits.

We also report first results of a test of Lorentz invariance in the SME matter
sector, using Zeeman transitions in a laser cooled Cs atomic fountain clock. We
describe the experiment together with the theoretical model and analysis. Recent
experimental results are presented and analyzed, including statistical uncertainties
and a brief discussion of systematic effects. Based on these results, we give a first
estimate of components of the c̃p parameters of the SME matter sector. A full
analysis of systematic effects is still in progress, and will be the subject of a future
publication together with our final results. If confirmed, the present limits would
correspond to first ever measurements of some c̃p components, and improvements
by 11 and 14 orders of magnitude on others.

1 Introduction

One hundred years after Einstein’s first paper [1] special relativity is still
standing up to all experimental tests and verifications. Over the last century
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a large number of such tests have provided what is certainly one of the most
solid experimental bases of any present fundamental theory of physics. As a
consequence special relativity is today underpinning all of present day physics,
ranging from the standard model of particle physics (including nuclear and
atomic physics) to general relativity and astronomy. That fact continues to
push experimentalists to search for new experiments, or improve on previous
ones, in order to uncover a possible violation of special relativity, as that
would most certainly lead the way to a new conception of physics and of
the universe surrounding us. Additional incentive for such tests comes from
unification theories (e.g. string theories, loop quantum gravity), some of which
[2, 3, 4] suggest a violation of special relativity at some, a priori unknown,
level. Given the strong theoretical motivation for such theories, but the lack
of experimental data that would allow a more rigorous selection among the
candidate theories and the parameter space of each class of such theories,
any experimental results that could aid the theoretical efforts are certainly
welcome.

The fundamental hypothesis of special relativity is what Einstein termed
the ”principle of relativity” [1], or in more modern terms Local Lorentz Invari-
ance (LLI) [5]. Loosely stated, LLI postulates that the outcome of any local
test experiment is independent of the velocity of the freely falling apparatus.
LLI can be viewed as a constituent part of the Einstein Equivalence Principle
which is fundamental to general relativity and all metric theories of gravita-
tion [5]. The experiments presented in this paper test some aspect of LLI, as
characterized in Lorentz violating theoretical frameworks like the ones briefly
described in section 2.

We review and present two of our recent and ongoing experiments [7, 8, 9]
that test different aspects of LLI, analyzing and describing their outcome in
two theoretical frameworks, the kinematical test theory of Robertson, Man-
souri and Sexl (RMS) [10, 11] and the Lorentz violating extension of the stan-
dard model (SME) [12]. These experiments, a Michelson-Morley and Kennedy-
Thorndike test (section 3), and an ongoing atomic clock test in the SME
matter sector (section 4), are among the most precise LLI tests at present.

The vast majority of modern experiments that test LLI rely essentially on
the stability of atomic clocks and macroscopic resonators, therefore improve-
ments in oscillator technology have gone hand in hand with improved tests
of LLI. The experiments presented here are no exception. All of them employ
clocks and resonators developed and used primarily for other purposes (na-
tional and international time scales, frequency calibration, etc.) but adapted
for tests of LLI.

2 Theoretical frameworks

Numerous test theories that allow the modeling and interpretation of exper-
iments that test LLI have been developed. Kinematical frameworks [10, 11]
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postulate a simple parametrisation of the Lorentz transformations with exper-
iments setting limits on the deviation of those parameters from their special
relativistic values. A more fundamental approach is offered by theories that
parametrise the coupling between gravitational and non-gravitational fields
(THǫµ [15, 5, 16] or χg [17] formalisms) which allow the comparison of exper-
iments that test different aspects of the EEP. Finally, formalisms motivated
by unification theories [3, 18, 12] have the advantage of opening the way to
experimental investigations in the domain of the unification of gravity with
the other fundamental forces of nature. In this work we restrict ourselves to
two theoretical frameworks, the kinematical framework developed by Robert-
son, Mansouri and Sexl (RMS) and the more recent standard model extension
(SME) of Kostelcký and co-workers.

By construction, kinematical frameworks do not allow for any dynamical
effects on the measurement apparatus. This implies that in all inertial frames
two clocks of different nature (e.g. based on different atomic species) run at
the same relative rate, and two length standards made of different materials
keep their relative lengths. Coordinates are defined by the clocks and length
standards, and only the transformations between those coordinate systems
are modified. In general this leads to observable effects on light propagation
in moving frames but, by definition, to no observable effects on clocks and
length standards. In particular, no attempt is made at explaining the un-
derlying physics (e.g. modified Maxwell and/or Dirac equations) that could
lead to Lorentz violating light propagation but leave e.g. atomic energy levels
unchanged. On the other hand dynamical frameworks (e.g. the THǫµ formal-
ism or the SME) in general use a modified general Lagrangian that leads to
modified Maxwell and Dirac equations and hence to Lorentz violating light
propagation and atomic properties, which is why they are considered more
fundamental and more complete than the kinematical frameworks. Further-
more, as shown in [19], the SME is kept sufficiently general to, in fact, encom-
pass the kinematical frameworks and some other dynamical frameworks (in
particular the THǫµ formalism) as special cases, although there are no simple
and direct relationships between the respective parameters.

2.1 The Robertson, Mansouri & Sexl framework

Kinematical frameworks for the description of Lorentz violation have been pi-
oneered by Robertson [10] and further refined by Mansouri and Sexl [11] and
others. Fundamentally the different versions of these frameworks are equiv-
alent, and relations between their parameters are readily obtained. As men-
tioned above these frameworks postulate generalized transformations between
a preferred frame candidate Σ(T,X) and a moving frame S(t,x) where it is
assumed that in both frames coordinates are realized by identical standards.
The transformations of [11] (in differential form) for the case where the veloc-
ity of S as measured in Σ is along the positive X-axis, and assuming Einstein



4 Peter Wolf et al.

synchronization in S (in all of the following the choice of synchronization
convention plays no role) are

dT =
1

a

(
dt +

vdx

c2

)
; dX =

dx

b
+

v

a

(
dt +

vdx

c2

)
; dY =

dy

d
; dZ =

dz

d
(1)

with c the velocity of light in vacuum in Σ, and v the velocity of S in Σ.
In special relativity αMS = −1/2; βMS = 1/2; δMS = 0 and (1) reduces to the
usual Lorentz transformations. Generally, the best candidate for Σ is taken
to be the frame of the cosmic microwave background (CMB) [20, 21] with
the velocity of the solar system in that frame taken as v⊙ ≈ 377 km/s, decl.
≈ −6.4◦, RA ≈ 11.2h.

Michelson-Morley type experiments [22] determine the coefficient PMM =
(1/2− βMS + δMS) of the direction dependent term. For many years the most
stringent limit on that parameter was |PMM | ≤ 5 × 10−9 determined over
23 years ago in an outstanding experiment [23]. Our experiment [8] confirms
that result with roughly equivalent uncertainty (2.2× 10−9). Recently an im-
provement to |PMM | ≤ 1.5×10−9 has been reported [25]. Kennedy-Thorndike
experiments [26] measure the coefficient PKT = (βMS −αMS− 1) of the veloc-
ity dependent term. The most stringent limit [28] on |PKT | has been recently
improved from [29] by a factor 3 to |PKT | ≤ 2.1 × 10−5. Our experiment [8]
improves this result by a factor of 70 to |PKT | ≤ 3.0 × 10−7. Finally Ives-
Stilwell experiments [27] measure αMS. The most stringent result comes from
the recent experiment of [14] which improves by a factor 4 our 1997 results
[6], limiting |αMS+1/2| to ≤ 2.2×10−7. The three types of experiments taken
together then completely characterize any deviation from Lorentz invariance
in this particular test theory, with present limits summarized in table 1 (but
note that table 1 does not include new limits reported in these proceedings).

Table 1. Present limits on Lorentz violating parameters in the framework of [11],
not including new limits reported in these proceedings.

Reference αMS + 1/2 1/2 − βMS + δMS βMS − αMS − 1

Saathoff et al. 2003 [14] ≤ 2.2 × 10−7 - -

Müller et al. 2003 [25] - (2.2 ± 1.5) × 10−9 -

Braxmaier et al. 2002[28] - - (1.9 ± 2.1) × 10−5

Wolf and Petit 1997 [6] ≤ 8 × 10−7 - -

Wolf et al. 2003 [8] - (1.2 ± 2.2) × 10−9 (1.6 ± 3.0) × 10−7
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2.2 The Standard Model Extension

The general Lorentz violating Standard Model Extension (SME) was devel-
oped relatively recently by Kostelecký and co-workers [12], motivated initially
by possible Lorentz violating phenomenological effects of string theory [2]. It
consists of a parametrised version of the standard model Lagrangian that in-
cludes all Lorentz violating terms that can be formed from known fields, and
includes (in its most recent version [30]) gravity.

The fundamental theory of the SME as applied to electrodynamics is laid
out in [19] and summarized below. We use that approach to model the MM
and KT experiments in section 3.2. For the discussion of the atomic clock
experiment of section 4 the SME matter sector is relevant. Its application
to atomic physics, and in particular atomic clock experiments, is laid out in
[31, 32] and summarized below.

Generally, the SME characterizes a potential Lorentz violation using a
number of parameters that are all zero in standard (non Lorentz violating)
physics. These parameters are frame dependent and consequently vary as a
function of the coordinate system chosen to analyze a given experiment. In
principle they may be constant and non-zero in any frame (e.g. the lab frame).
However, any non-zero values are expected to arise from Planck-scale effects in
the early Universe. Therefore they should be constant in a cosmological frame
(e.g. the one defined by the CMB radiation) or any frame that moves with
a constant velocity and shows no rotation with respect to the cosmological
one. Consequently the conventionally chosen frame to analyze and compare
experiments in the SME is a sun-centered, non-rotating frame as defined in
[19]. The general procedure is to calculate the SME perturbation of the exper-
imental observable in the lab frame (or cavity frame, or atom frame) and then
to transform the lab frame SME parameters to the conventional sun-centered
frame. This transformation will introduce a time variation of the frequency
related to the movement of the lab with respect to the sun-centered frame
(typically introducing time variations of sidereal and semi-sidereal periods for
an Earth fixed experiment).

SME photon sector

The photon sector of the SME is described by a Lagrangian that takes the
form

L = −
1

4
FµνFµν +

1

2
(kAF )κǫκλµνAλFµν −

1

4
(kF )κλµνFκλFµν (2)

where Fµν ≡ ∂µAν − ∂νAµ. The first term is the usual Maxwell part while
the second and third represent Lorentz violating contributions that depend on
the parameters kAF and kF . For most analysis the kAF parameter is set to 0
for theoretical reasons (c.f. [19]), which is also well supported experimentally.
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The remaining dimensionless tensor (kF )κλµν has a total of 19 independent
components that need to be determined by experiment. Retaining only this
term leads to Maxwell equations that take the familiar form but with D and
H fields defined by a general matrix equation

(
D

H

)
=

(
ǫ0(ǫ̃r + κDE)√

ǫ0
µ0

κHE

√
ǫ0
µ0

κDB

µ−1
0 (µ̃r

−1
+ κHB)

)(
E

B

)
(3)

where the κ are 3×3 matrices whose components are particular combinations
of the kF tensor (c.f. equation (5) of [19]). If we suppose the medium of interest
has general magnetic or dielectric properties, then ǫ̃r and µ̃r are also 3 x 3
matrices. In vacuum ǫ̃r and µ̃r are identity matrices. Equation (3) indicates a
useful analogy between the SME in vacuum and standard Maxwell equations
in homogeneous anisotropic media.

For the analysis of different experiments it turns out to be useful to intro-
duce further combinations of the κ matrices defined by:

(κ̃e+)jk =
1

2
(κDE + κHB)jk,

(κ̃e−)jk =
1

2
(κDE − κHB)jk −

1

3
δjk(κDE)ll,

(κ̃o+)jk =
1

2
(κDB + κHE)jk,

(κ̃o−)jk =
1

2
(κDB − κHE)jk,

κ̃tr =
1

3
(κDE)ll. (4)

The first four of these equations define traceless 3 × 3 matrices, while
the last defines a single coefficient. All κ̃ matrices are symmetric except κ̃o+

which is antisymmetric. These characteristics leave a total of 19 independent
coefficients of the κ̃.

In general experimental results are quoted and compared using the κ̃ pa-
rameters rather than the original kF tensor components. The 10 independent
components of the κ̃e+ and κ̃o− tensors, have been determined to ≤ 2×10−32

by astrophysical tests [19]. Of the 9 remaining independent components, 4
components of κ̃e− and the 3 components of κ̃o+ have been bounded by the
resonator experiments reported here and in [25, 9] to parts in 1015 and 1011

respectively, with our results improving by up to a factor 10 on the best pre-
vious ones (c.f. Tab.7). The scalar κ̃tr has been bounded recently by our SME
analysis [13] of the experiment of [14] to parts in 10−5. In [13] we also propose
several interferometer and resonator experiments that could improve the limit
on κ̃tr to parts in 1011 and the limits on κ̃o+ to parts in 1015. Finally, the
remaining component κ̃ZZ

e− is undetermined at present as it is not accessible to
Earth fixed experiments. However, it should be accessible to experiments that
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are rotating in the laboratory, like the ones reported elsewhere in these pro-
ceedings, which should yield the first limits on that parameter and thereby
complete the coverage of the parameter space in the SME photon sector.
Present limits are summarized in Tab.2 (not including new limits reported in
these proceedings).

Table 2. Present limits on Lorentz violating parameters in the SME photon sector,
not including new limits reported in these proceedings.

Parameter κ̃e+ κ̃o− κ̃e− (κ̃ZZ
e− ) κ̃o+ κ̃tr

No. of components 5 5 4 1 3 1

Limits 10−32 10−32 10−15 - 10−11 10−5

Reference [19] [19] [9, 25] - [9, 25] [13]

SME matter sector

In the matter sector, the SME modifies the Lagrangian of a spin 1/2 fermion
[41, 31] via a number of parameterized Lorentz violating terms. When applied
to atomic physics, this leads to a perturbation of the standard model Hamil-
tonian parametrised by 40 parameters for each fundamental particle (proton,
neutron, electron), which in turn leads to a shift of the atomic energy levels
and atomic transition frequencies (see [31, 32] for details). Quite generally,
the energy level shifts can be expressed in the form

∆E = m̂F (Ee
d + Ep

d + En
d ) + m̃F (Ee

q + Ep
q + En

q ) (5)

where Ed and Eq are energies given below, the superscripts e, p, n stand for
electron, proton and neutron and m̂F and m̃F are defined as

m̂F :=
mF

F
, m̃F :=

3m2
F − F (F + 1)

3F 2 − F (F + 1)
. (6)

In general ∆E of (5) will be time varying as the energies Ew
d , Ew

q (w
stands for e, p, n) depend on the orientation of the angular momentum of w
with respect to the fixed stars (best approximation to the frame in which
symmetry breaking took place in the early universe). Of particular interest
will be (see section 4) Zeeman sublevels with mF 6= 0 in which case the
orientation of the quantization axis (quantization magnetic field) is relevant,
so one can expect variations of ∆E at sidereal and semi-sidereal frequencies
due to the precession of the quantization axis with the rotation of the Earth.

The energies in (5) are [31]
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Ew
d = βwb̃w

3 + δwd̃w
3 + κw g̃w

d

Ew
q = γwc̃w

q + λw g̃w
q . (7)

In (7) the tilde quantities have the dimensions of energy and represent
laboratory frame combinations of the SME parameters that need to be de-
termined by experiment. They are time varying at sidereal and semi-sidereal
frequencies as they are obtained by transforming the constant sun-centered-
frame parameters to the laboratory frame. The other coefficients in (7) are
constant and depend on the nuclear and electronic structure of the atom. Ex-
plicit expressions can be found in [31], with their values calculated for certain
atoms and states (including the 133Cs atom of interest to our experiment) in
[32].

Our experiment (see section 4) is sensitive to c̃p
q . When transforming to the

sun-centered-frame this parameter is a time varying combination of 8 constant
SME parameters (c̃Q, c̃−, c̃X , c̃Y , c̃Z , c̃TX , c̃TY , c̃TZ), which are generally
used [31, 32] to state and compare experimental results (see Tab. 3). In some
publications [43, 44] the results are stated in terms of dimensionless sun-frame
parameters related to the c̃ parameters by (c.f. [32] Appendix B)

c̃Q = mc2(cXX + cY Y − 2cZZ)

c̃− = mc2(cXX − cY Y ) (8)

c̃J = mc2|ǫJKL|cKL

c̃TJ = mc2(cTJ + cJT )

where m is the mass of the particle (mn, mp, or me), indices J, K, L run over
sun-frame spatial coordinates X, Y, Z and the totally antisymmetric tensor
ǫJKL is defined with ǫXY Z = +1.

Existing bounds on the 40 parameters for each particle (n,p,e) come
from clock comparison and magnetometer experiments using different atomic
species ([32] and references therein, [42]), from resonator experiments (includ-
ing our experiments described in section 3 as analyzed recently by Müller)
[43, 9, 25], and from analysis of Ives-Stilwell (Doppler-shift) experiments
[44, 14]. They are summarized in Tab. 3 below. The expected results of our
present experiment (see section 4) are given in Tab. 3 in brackets. They cor-
respond to first measurements of some parameters and an improvement by 11
and 14 orders of magnitude on others.

3 Michelson-Morley and Kennedy-Thorndike tests

In this section we review the results [7, 8, 9] of our experiment that compares
the frequencies of a cryogenic sapphire oscillator (CSO) and a hydrogen maser
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Table 3. Orders of magnitude of present limits (in GeV) on Lorentz violating param-
eters in the SME matter sector and corresponding references. Expected uncertainties
from the experiment reported in section 4 are given in brackets.

Parameter Proton Neutron Electron References

b̃X , b̃Y 10−27 10−31 10−29 [45], [46], [47]

b̃Z - - 10−28 [47]

b̃T , g̃T , H̃JT , d̃±, d̃Q, d̃XY , d̃Y Z - 10−27 - [42]

d̃XZ - - -

d̃X , d̃Y 10−25 10−29 10−22 [31], [42], [31]

d̃Z - - -

g̃DX , g̃DY 10−25 10−29 10−22 [31], [42], [31]

g̃DZ - - -

g̃JK - - -

g̃c - 10−27 - [42]

g̃−, g̃Q, g̃TJ - - -

c̃− (10−25) 10−27 10−19 [31], [43, 9, 25]

c̃Q (10−25) 10−11 - 10−9 [44, 14]

c̃X , c̃Y (10−25) 10−25 10−19 [31], [43, 9, 25]

c̃Z (10−25) 10−27 10−19 [31], [43, 9, 25]

c̃TJ (10−19) 10−8 - 10−6 [44, 14]

atomic clock. Both devices operate at microwave frequencies and are run and
compared continuously for timekeeping purposes at the Paris observatory.
We use that data to carry out Michelson-Morley and Kennedy-Thorndike
experiments, searching for a dependence of the difference frequency on the
orientation and/or the velocity of the CSO with respect to a prefered frame
candidate.

The heart of the experiment is a monolithic sapphire crystal of cylindri-
cal shape, about 5 cm diameter and 3 cm height. The resonance frequency is
determined by exciting a so called Whispering Gallery mode, corresponding
to a standing wave set up around the perimeter of the cylinder (see fig. 1 and
[8] for a detailed description). In our case the excited mode is a TE mode
at 11.932 GHz, with dominant radial electric and vertical magnetic fields
corresponding to propagation (Poynting) vectors in both directions around
the circumference. The CSO is an active system oscillating at the resonant
frequency (i.e. a classical loop oscillator which amplifies and re-injects the
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”natural” resonator signal). Additionally the signal is locked to the resonance
using the Pound-Drever technique (modulation at ≈ 80 kHz). The incident
power is stabilized in the cryogenic environment and the spurious AM mod-
ulation is minimized using a servo loop. To minimize temperature sensitivity
the resonator is heated (inside the 4 K environment) and stabilized to the
temperature turning point (≈ 6 K) of the resonator frequency which arises
due to paramagnetic impurities in the sapphire. Under these conditions the
loaded quality factor of the resonator is slightly below 109. The resonator is
kept permanently at cryogenic temperatures, with helium refills taking place
about every 20 - 25 days.

The CSO is compared to a commercial (Datum Inc.) active hydrogen maser
whose frequency is also regularly compared to caesium and rubidium atomic
fountain clocks in the laboratory [33]. The CSO resonant frequency at 11.932
GHz is compared to the 100 MHz output of the hydrogen maser. The maser
signal is multiplied up to 12 GHz of which the CSO signal is subtracted.
The remaining ≈ 67 MHz signal is mixed to a synthesizer signal at the same
frequency and the low frequency beat at ≈ 64 Hz is counted, giving access to
the frequency difference between the maser and the CSO. The instability of
the comparison chain has been measured at ≤ 2 × 10−14τ−1, with long term
instabilities dominated by temperature variations, but not exceeding 10−16.

3.1 Results in the RMS framework

In the RMS framework our experiment sets the most stringent limit for
Kennedy-Thorndike experiments (improving by a factor 70 over previous re-
sults) and is among the most precise Michelson-Morley tests (see table 1).
Those results were reported in [7, 8] and are summarized here.

i n n e r c a u s t i c s u r f a c e

Fig. 1. Magnitude of the Hz field calculated for the WG14,0,0 mode in a sapphire
disk resonator. The r-φ and r-z planes are represented. The inner caustic is shown,
and the mode can be approximated as two guided waves propagating in opposite
directions around the azimuth.
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In the RMS framework the frequency of a resonator in the lab frame S
is proportional to tc

−1 where tc is the return travel time of a light signal in
the resonator. Setting c2dT 2 = dX2 + dY 2 + dZ2 in the preferred frame Σ,
and transforming according to (1) we find the coordinate travel time of a light
signal in S:

dt =
dl

c

(
1 − (βMS − αMS − 1)

v2

c2
−

(
1

2
− βMS + δMS

)
sin2θ

v2

c2

)
+O(4) (9)

where dl =
√

dx2 + dy2 + dz2 and θ is the angle between the direction of light
propagation and the velocity v of S in Σ.

Calculating tc from (9) the relative frequency difference between the sap-
phire oscillator and the hydrogen maser (which, by definition, realizes coordi-
nate time in S [34]) is

∆ν(t)

ν0
= PKT

v(t)2

c2
+ PMM

v(t)2

c2

1

2π

∫ 2π

0

sin2θ(t, ϕ)dϕ + O(3) (10)

where ν0 is the unperturbed frequency, v(t) is the (time dependent) speed of
the lab in Σ, and ϕ is the azimuthal angle of the light signal in the plane of
the cylinder. The periodic time dependence of v and θ due to the rotation
and orbital motion of the Earth with respect to the CMB frame allow us
to set limits on the two parameters in (10) by fitting the periodic terms of
appropriate frequency and phase (see [36] for calculations of similar effects
for several types of oscillator modes). Given the limited durations of our data
sets (≤ 16 days) the dominant periodic terms arise from the Earth’s rotation,
so retaining only those we have v(t) = u + ω × R with u the velocity of the
solar system with respect to the CMB, ω the angular velocity of the Earth,
and R the geocentric position of the lab. We then find after some calculation.

∆ν/ν0 = PKT (Hsinλ)
+PMM (Acosλ + Bcos(2λ) + Csinλ + Dsinλcosλ + Esinλcos(2λ))

(11)
where λ = ωt + φ, and A-E and φ are constants depending on the latitude
and longitude of the lab (≈ 48.7◦N and 2.33◦E for Paris). Numerically H ≈
−2.6×10−9, A ≈ −8.8×10−8, B ≈ 1.8×10−7, C-E of order 10−9. We note that
in (11) the dominant time variations of the two combinations of parameters
are in quadrature and at twice the frequency which indicates that they should
decorelate well in the data analysis allowing a simultaneous determination of
the two (as confirmed by the correlation coefficients given below). Fitting this
simplified model to our data we obtain results that differ by less than 10%
from the results presented below that were obtained using the complete model
((10) including the orbital motion of the Earth).
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For the RMS analysis we use 13 data sets in total spanning Sept. 2002 to
Aug. 2003, of differing lengths (5 to 16 days, 140 days in total). The sampling
time for all data sets was 100 s except two data sets with τ0 = 12 s. To make
the data more manageable we first average all points to τ0 = 2500 s. For the
data analysis we simultaneously fit (using weighted least squares, WLS, c.f.
[8]) an offset and a rate (natural frequency drift, typically ≈ 1.7× 10−18 s−1)
per data set and the two parameters of the model (10). In the model (10) we
take into account the rotation of the Earth and the Earth’s orbital motion,
the latter contributing little as any constant or linear terms over the durations
of the individual data sets are absorbed by the fitted offsets and rates.

Figure 2 shows the resulting values of the two parameters (PKT and PMM )
for each individual data set. A global WLS fit of the two parameters and the 13
offsets and drifts yields PMM = (1.2±1.9)×10−9 and PKT = (1.6±2.3)×10−7

(1σ uncertainties), with the correlation coefficient between the two parameters
less than 0.01 and all other correlation coefficients < 0.06. The distribution of
the 13 individual values around the ones obtained from the global fit is well
compatible with a normal distribution (χ2 = 10.7 and χ2 = 14.6 for PMM

and PKT respectively).
Systematic effects at diurnal or semi-diurnal frequencies with the appropri-

ate phase could mask a putative sidereal signal. The statistical uncertainties
of PMM and PKT obtained from the WLS fit above correspond to sidereal
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Fig. 2. Values (published in [8]) of the two parameters (PKT and PMM ) from a
fit to each individual data set (blue diamonds) and a global fit to all the data (red
squares). For comparison the previous results published in [7] are also shown (green
triangles). The error bars indicate the combined uncertainties from statistics and
systematic effects.
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and semi-sidereal terms (from (11)) of ≈ 7 × 10−16 and ≈ 4 × 10−16 respec-
tively so any systematic effects exceeding these limits need to be taken into
account in the final uncertainty. We expect the main contributions to such
effects to arise from temperature, pressure and magnetic field variations that
would affect the hydrogen maser, the CSO and the associated electronics, and
from tilt variations of the CSO which are known to affect its frequency (see
section 3.2 for a detailed discussion). Our final uncertainties (the error bars in
Fig. 2) are the quadratic sums of the statistical uncertainties from the WLS
adjustment for each data set and the systematic uncertainties calculated for
each data set from (11). For the global adjustment we average the systematic
uncertainties from the individual data sets obtaining ±1.2 × 10−9 on PMM

and ±1.9 × 10−7 on PKT .
In the RMS framework, our experiment simultaneously constrains two

combinations of the three parameters of the Mansouri and Sexl test the-
ory (previously measured individually by Michelson-Morley and Kennedy-
Thorndike experiments). We obtain δMS − βMS + 1/2 = 1.2(1.9)(1.2) × 10−9

which is of the same order as the best previous results [25, 23], and βMS −
αMS − 1 = 1.6(2.3)(1.9)× 10−7 which improves the best previous limit [28] by
a factor of 70 (the first bracket indicates the 1σ uncertainty from statistics the
second from systematic effects). We note that our value on δMS − βMS + 1/2
is compatible with the slightly significant recent result of [25] who obtained
δMS − βMS + 1/2 = (2.2 ± 1.5) × 10−9.

As a result of our experiment the Lorentz transformations are confirmed
in the RMS framework (c.f. Tab. 1) with an overall uncertainty of ≤ 3× 10−7

limited by our determination of βMS − αMS − 1 and the recent limit [14] of
2.2 × 10−7 on the determination of αMS. The latter is likely to improve in
the coming years by experiments such as ACES (Atomic Clock Ensemble in
Space [37]) that will compare ground clocks to clocks on the international
space station aiming at a 10−8 measurement of αMS.

3.2 Results in the SME

In the SME our experiment sets the presently most stringent limits on a
number of photon sector parameters, improving previous results [25] by up
to an order of magnitude. These results were first published in [9] and are
reproduced here.

The SME perturbed frequency of a resonator can be calculated from equa-
tion (3) in the form (c.f. [19])

∆ν

ν0
= −

1

〈U〉

∫

V

d3x
(
ǫ0E0

∗ · κDE · E0 − µ−1
0 B0

∗ · κHB · B0 (12)

+ 2Re(

√
ǫ0
µ0

E0

∗ · κDB · B0)

)
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where B0,H0,E0,D0 are the unperturbed (standard Maxwell) fields and
〈U〉 =

∫
V d3x(E0 · D0

∗ + B0 · H0

∗). Note that, as shown in [31], the fre-
quency of the H-maser is not affected to first order (because it operates on
mF = 0 states) and [38] shows that the perturbation of the frequency due to
the modification of the sapphire crystal structure (and hence the cavity size)
is negligible with respect to the direct perturbation of the e-m fields.

The resonator is placed in the lab with its symmetry axis along the vertical.
Applying (13) in the lab frame (z-axis vertical upwards, x-axis pointing south),
with the fields calculated using a finite element technique as described in [8],
we obtain an expression for the frequency variation of the resonator

∆ν

ν0
= (MDE)xx

lab ((κDE)xx
lab + (κDE)yy

lab) + (MDE)zz
lab(κDE)zz

lab

+ (MHB)xx
lab ((κHB)xx

lab + (κHB)yy
lab) + (MHB)zz

lab(κHB)zz
lab (13)

with the Mlab components given in Tab. 4. To obtain the values in Tab. 4 we
take into account the fields inside the resonator (c.f. [8]) and outside (≤ 2%
of the energy).

Table 4. Mlab components calculated using (13) and a finite element technique for
the determination of the fields inside the resonator (see [8] for details)

(MDE)xx
lab (MDE)zz

lab (MHB)xx
lab (MHB)zz

lab

-0.03093 -0.0004030 0.008408 0.4832

The last step is to transform the κ tensors in (13) to the conventional
sun-centered frame using the explicit transformations provided in [19], and to
express the result in terms of the κ̃ tensors of (4). We obtain

ν − ν0

ν0
=
∑

i

Cicos(ωiT⊕ + ϕi) + Sisin(ωiT⊕ + ϕi) (14)

where ν0 is the unperturbed frequency difference, the sum is over the six
frequencies ωi of Tab.5, the coefficients Ci and Si are functions of the Lorentz
violating tensors κ̃e− and κ̃o+ (see Tab.5), T⊕ = 0 on December 17, 2001,
18:05:16 UTC, ϕω⊕ = ϕ2ω⊕ = 0 and ϕ(ω⊕±Ω⊕) = ϕ(2ω⊕±Ω⊕) = ±4.682 rad.
To obtain the relations of Tab.5 between Ci, Si and the SME parameters we
have assumed zero values for the 10 independent components of the κ̃e+ and
κ̃o− tensors, as those have been determined to ≤ 2 × 10−32 by astrophysical
tests [19].

To determine all 7 SME parameters appearing in Tab.5 one requires over
a year of data in order to be able to decorrelate the annual sidebands from the
sidereal and twice sidereal frequencies. To do so we have extended the data to
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Table 5. Coefficients Ci and Si in (1) for the six frequencies ωi of interest and
their relation to the components of the SME parameters κ̃e− and κ̃o+, with ω⊕ and
Ω⊕ the angular frequencies of the Earth’s sidereal rotation and orbital motion. The
measured values (in 10−16) are shown together with the statistical (first bracket)
and systematic (second bracket) uncertainties.

ωi Ci Si

ω⊕ − Ω⊕ (−8.6 × 10−6)κ̃Y Z
o+ (8.6 × 10−6)κ̃XZ

o+ − (4.2 × 10−5)κ̃XY
o+

ω⊕ −0.44κ̃XZ
e− + (1.1 × 10−6)κ̃XZ

o+ −0.44κ̃Y Z
e− + (1.1 × 10−6)κ̃Y Z

o+

ω⊕ + Ω⊕ (−8.6 × 10−6)κ̃Y Z
o+ (8.6 × 10−6)κ̃XZ

o+ + (1.8 × 10−6)κ̃XY
o+

2ω⊕ − Ω⊕ (−1.8 × 10−5)κ̃XZ
o+ (−1.8 × 10−5)κ̃Y Z

o+

2ω⊕ −0.10(κ̃XX
e− − κ̃Y Y

e− ) −0.19κ̃XY
e−

2ω⊕ + Ω⊕ (7.8 × 10−7)κ̃XZ
o+ (7.8 × 10−7)κ̃Y Z

o+

ω⊕ − Ω⊕ −6.9(4.2)(4.5) 6.7(4.2)(4.5)

ω⊕ 14(4.2)(4.2) 2.4(4.2)(4.2)

ω⊕ + Ω⊕ −6.0(4.2)(4.2) 2.7(4.2)(4.2)

2ω⊕ − Ω⊕ 3.7(2.4)(3.7) −2.9(2.4)(3.7)

2ω⊕ 3.1(2.4)(3.7) 11(2.4)(3.7)

2ω⊕ + Ω⊕ 0.0(2.4)(3.7) −1.2(2.4)(3.7)

20 data sets in total, spanning Sept. 2002 to Jan. 2004, of differing lengths (5
to 20 days, 222 days in total). The sampling time for all data sets was 100 s.

For the statistical analysis we first average the data to 2500 s sampling
time and then simultaneously fit the 20 rates and offsets and the 12 param-
eters Ci and Si of (14) to the complete data using two statistical methods,
weighted least squares (WLS), which allows one to account for non-white
noise processes (cf. [7]), and individual periods (IP) as used in [25]. The two
methods give similar results for the parameters (within the uncertainties) but
differ in the estimated uncertainties (the IP uncertainties are a factor ≈ 1.2
larger). Because IP discards a significant amount of data (about 10% in our
case) we consider WLS the more realistic method and retain those results as
the statistical uncertainties shown in Tab.5. We note that we now have suffi-
cient data to decorrelate all 12 parameters (Ci, Si) i.e. the WLS correlation
coefficients between any two parameters or between any parameter and the
fitted offsets and rates are all less than 0.20.

To investigate the distributions of our results we fit the coefficients Ci and
Si to each one of the 20 data sets individually with the results at the sidereal
and semi-sidereal frequencies ω⊕ and 2ω⊕ shown in Fig.3. If a genuine effect
at those frequencies was present we would expect correlated phases of the
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individual points in Fig.3, but this does not seem to be supported by the
data. A distribution of the phases may result from an effect at a neighboring
frequency, in particular the diurnal and semi-diurnal frequencies ω⊕−Ω⊕ and
2(ω⊕−Ω⊕) at which we would expect systematic effects to play an important
role. Fig. 4 shows the amplitudes Aω =

√
C2

ω + S2
ω resulting from least squares

fits for a range of frequencies, ω, around the frequencies of interest. We note
that the fitted amplitudes at ω⊕ − Ω⊕ and 2(ω⊕ − Ω⊕) are substantially
smaller than those at ω⊕ and 2ω⊕ and therefore unlikely to contribute to the
distribution of the points in Fig.3.

Systematic effects at the frequencies ωi could mask a putative Lorentz
violating signal in our experiment and need to be investigated in order to be
able to confirm such a signal or to exclude it within realistic limits. We have
extensively studied all systematic effects arising from environmental factors
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Fig. 3. Fitted sine and cosine amplitudes at ω⊕ and 2ω⊕ for each data set (blue
squares) and the complete data (red diamonds, with statistical errors). For clarity
the error bars of the individual data sets have been omitted.
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that might affect our experiment. The resulting estimated contributions at
the two central frequencies ω⊕, 2ω⊕ and at the diurnal frequency ω⊕ − Ω⊕

are summarized in Tab.6. The contributions at ω⊕ + Ω⊕ and 2ω⊕ ± Ω⊕ are
not shown as they are identical to those at ω⊕ and 2ω⊕ respectively.

Table 6. Contributions from systematic effects to the amplitudes Ai (parts in 1016)
at three frequencies ωi.

Effect ω⊕ − Ω⊕ ω⊕ 2ω⊕

H-maser < 5 < 5 < 5

Tilt 3 3 1

Gravity 0.3 0.3 0.3

B-field < 0.1 < 0.1 < 0.1

Temperature < 1 < 1 < 1

Atm. Pressure 2.3 0.3 0.4

Total 6.4 5.9 5.2

We have compared the Hydrogen-maser (HM) used as our frequency ref-
erence to our highly stable and accurate Cs fountain clocks (FO2 and FOM).
For example, the amplitudes at ω⊕ and 2ω⊕ of the HM-FOM relative fre-
quency difference over June-July 2003 were Aω⊕ = (4.8 ± 4.7) × 10−16 and
A2ω⊕ = (4.3 ± 4.7)× 10−16. This indicates that any environmental effects on
the HM at those frequencies should be below 5 parts in 1016 in amplitude.
This is in good agreement with studies on similar HMs carried out in [39] that
limited environmental effects to < 3 to 4 parts in 1016.

To estimate the tilt sensitivity we have intentionally tilted the oscillator
by ≈ 5 mrad off its average position which led to relative frequency variations
of ≈ 3× 10−13 from which we deduce a tilt sensitivity of ≈ 6× 10−17µrad−1.
This is in good agreement with similar measurements in [40] that obtained
sensitivities of ≈ 4 × 10−17µrad−1. Measured tilt variations in the lab at
diurnal and semi-diurnal periods show amplitudes of 4.6 µrad and 1.6 µrad
respectively which leads to frequency variations that do not exceed 3× 10−16

and 1 × 10−16 respectively.
From the measurements of tilt sensitivity one can deduce the sensitivity

to gravity variations (cf. [40]), which in our case lead to a sensitivity of ≈
3 × 10−10g−1. Tidal gravity variations can reach ≈ 10−7g from which we
obtain a maximum effect of 3 × 10−17, one order of magnitude below the
effect from tilt variations.

Variations of the ambient magnetic field in our lab. are dominated by the
passage of the Paris Metro, showing a strong periodicity (”quiet” periods from
1 am to 5 am). The corresponding diurnal and semi-diurnal amplitudes are
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1.7 × 10−4 G and 3.4 × 10−4 G respectively for the vertical field component
and about 10 times less for the horizontal one. To determine the magnetic
sensitivity of the CSO we have applied a sinusoidal vertical field of 0.1 G
amplitude with a 200 s period. Comparing the CSO frequency to the FO2
Cs-fountain we see a clear sinusoidal signal (S/N > 2) at the same period
with an amplitude of 7.2× 10−16, which leads to a sensitivity of ≈ 7 × 10−15

G−1. Assuming a linear dependence (there is no magnetic shielding that could
lead to non-linear effects) we obtain effects of only a few parts in 10−18.

Late 2002 we implemented an active temperature stabilization inside an
isolated volume (≈ 15m3) that includes the CSO and all the associated elec-
tronics. The temperature is measured continously in two fixed locations (be-
hind the electronics rack and on top of the dewar). For the best data sets the
measured temperature variations do not exceed 0.02/0.01 K in amplitude for
the diurnal and semi-diurnal components. A least squares fit to all our tem-
perature data (taken simultaneously with our frequency measurements) yields
amplitudes of Aω⊕ = 0.020 K and A2ω⊕ = 0.018 K with similar values at the
other frequencies ωi of interest, including the diurnal one (Aω⊕−Ω⊕ = 0.022
K). Inducing a strong sinusoidal temperature variation (≈ 0.5 K amplitude
at 12 h period) leads to no clearly visible effect on the CSO frequency. Tak-
ing the noise level around the 12 h period as the maximum effect we obtain
a sensitivity of < 4 × 10−15 per K. Using this estimate we obtain effects of
< 1 × 10−16 at all frequencies ωi.

Finally we have investigated the sensitivity of the CSO to atmospheric
pressure variations. To do so we control the pressure inside the dewar using
a variable valve mounted on the He-gas exhaust. During normal operation
the valve is open and the CSO operates at ambient atmospheric pressure. For
the sensitivity determination we have induced a sinusoidal pressure variation
(≈ 14 mbar amplitude at 12 h period), which resulted in a clearly visible
effect on the CSO frequency corresponding to a sensitivity of ≈ 6.5 × 10−16

mbar−1. We have checked that the sensitivity is not significantly affected
when changing the amplitude of the induced pressure variation by a factor 3.
A least squares fit to atmospheric pressure data (taken simultaneously with
our frequency measurements) yields amplitudes of Aω⊕ = 0.045 mbar and
A2ω⊕ = 0.054 mbar with similar values at the other frequencies ωi of interest,
except the diurnal one for which Aω⊕−Ω⊕ = 0.36 mbar. The resulting effects
on the CSO frequency are given in Tab.6.

Our final results for the 7 components of κ̃e− and κ̃o+ are obtained from a
least squares fit to the 12 measured coefficients of Tab.5. They are summarized
and compared to the results of [25] in Tab.7.

We note that our results for κ̃XY
e− and κ̃XZ

e− are significant at about 2σ, while
those of [25] are significant at about the same level for (κ̃XX

e− − κ̃Y Y
e− ). The two

experiments give compatible results for κ̃XZ
e− (within the 1σ uncertainties) but

not for the other two parameters, so the measured values of those are unlikely
to come from a common source. Another indication for a non-genuine effect
comes from figures 3 and 4, as we would expect any genuine effect to show an
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Table 7. Results for the components of the SME Lorentz violation parameters κ̃e−

(in 10−15) and κ̃o+ (in 10−11).

κ̃XY
e− κ̃XZ

e− κ̃Y Z
e− (κ̃XX

e− − κ̃Y Y
e− )

from [25] 1.7(2.6) -6.3(12.4) 3.6(9.0) 8.9(4.9)

this work -5.7(2.3) -3.2(1.3) -0.5(1.3) -3.2(4.6)

κ̃XY
o+ κ̃XZ

o+ κ̃Y Z
o+

from [25] 14(14) -1.2(2.6) 0.1(2.7)

this work -1.8(1.5) -1.4(2.3) 2.7(2.2)

approximately coherent phase for the individual data sets in figure 3 and to
display more prominent peaks in figure 4.

In conclusion, we have not seen any Lorentz violating effects in the general
framework of the SME, and set limits on 7 parameters of the SME photon
sector (cf. Tab. 7) which are up to an order of magnitude more stringent
than those obtained from previous experiments [25]. Two of the parameters
are significant (at ≈ 2σ). We believe that this is most likely a statistical
coincidence or a neglected systematic effect. To verify this, our experiment is
continuing and new, more precise experiments are under way [36].

4 Atomic clock test of Lorentz invariance in the SME

matter sector

For this experiment we use one of the laser cooled fountain clocks operated
at the Paris observatory, the 133Cs and 87Rb double fountain FO2 [48]. We
run it in Cs mode on the |F = 4〉 ↔ |F = 3〉 hyperfine transition of the 6S1/2

ground state. Both hyperfine states are degenerate, with Zeeman substates
mF = [−4, 4] and mF = [−3, 3] respectively. The clock transition used in
routine operation is |F = 4, mF = 0〉 ↔ |F = 3, mF = 0〉 at 9.2 GHz, which
is magnetic field independent to first order. The first order magnetic field
dependent Zeeman transitions (|F = 4, mF = i〉 ↔ |F = 3, mF = i〉 with
i = ±1,±2,±3) are used regularly for measurement and characterization of
the magnetic field, necessary to correct the second order Zeeman effect of the
clock transition. In routine operation the clock transition frequency stability
of FO2 is 1.6 × 10−14τ−1/2, and its accuracy 7 × 10−16 [48, 49], the best
performance of any clock at present.

In the presence of Lorentz violation the SME frequency shift of a Cs
|F = 4, mF 〉 ↔ |F = 3, mF 〉 transition, arising from the energy level shifts
described in section 2.2, has been calculated explicitly in [32]. It can be written
in the form
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h̄(δωSME) = sp
1

(
βpb̃

p
3 − δpd̃

p
3 + κpg̃

p
d

)
+ sp

2

(
γpc̃

p
q − λpg̃

p
q

)

+ se
1

(
βeb̃

e
3 − δed̃

e
3 + κeg̃

e
d

)
(15)

where the tilde quantities are the SME matter sector parameters described
in section 2.2. The quantities βw, δw, κw, γw, λw depend on the nuclear and
electronic structure, and are given in table II of [32]. The s coefficients result
from the application of the Wigner-Eckhart theorem and are also given in
[32]. All coefficients entering equation (15) are summarized in table 8.

Table 8. Coefficients entering equation (15) for a 133Cs |F = 4, mF 〉 ↔ |F = 3, mF 〉
transition. Kp = 〈p2〉/m2

p for the Schmidt proton and Ke = 〈p2〉/m2
e for the valence

electron, with Kp ≈ 10−2 and Ke ≈ 10−5 [32].

βp δp κp γp λp βe δe κe sp
1 sp

2 se
1

7

9
− 7

33
Kp

28

99
Kp − 1

9
Kp 0 −1 1

3
Ke − 1

3
Ke − 1

14
mF − 1

14
m2

F
1

2
mF

From equation (15) and table 8 we notice that all mF 6= 0 Zeeman tran-
sitions are sensitive to a violation of Lorentz symmetry, but not the mF = 0
clock transition. So in principle a direct measurement of one of the Zeeman
transitions with respect to the clock transition (used as the reference) can
yield a test of Lorentz invariance. The sensitive axis of the experiment is
defined by the direction of the quantization magnetic field used to separate
the Zeeman substates (vertical in the case of FO2), hence the rotation of the
earth provides a modulation of the Lorentz violating signal at sidereal and
semi-sidereal frequencies, which could be searched for in the data.

However, in such a direct measurement the first order Zeeman shift of the
mF 6= 0 transition would be the dominant error source and largely degrade the
sensitivity of the experiment. The complete frequency shift of a Cs hyperfine
Zeeman transition is [50]

δω = δωSME + mF K
(1)
Z B +

(
1 −

m2
F

16

)
K

(2)
Z B2 + ∆ (16)

where δωSME is the SME frequency shift given by (15), B is the magnetic

field seen by the atom, K
(1)
Z = 44.035 rad s−1 nT−1 is the first order Zee-

man coefficient, K
(2)
Z = 2685.75 rad s−1 T−2 is the second order coefficient,

and ∆ is the shift due to other systematic effects. In (16) the diurnal and
semi-diurnal variations of B would mimic a putative Lorentz violating signal
appearing in the sidereal and semi-sidereal variations of δωSME and render
such a measurement very uncertain.
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A somewhat cleverer strategy is to take advantage of the linear depen-
dence on mF of the first order Zeeman shift but quadratic dependence on mF

of one of the SME terms (the sp
2 term in (15)). That implies that when mea-

suring ”simultaneously” the mF = 3, mF = −3, and mF = 0 transitions and
forming the observable (ω+3 +ω−3−2ω0) one should obtain a quantity that is
independent of the first order Zeeman shift, but still shows a deviation from
zero and a sidereal and semi-sidereal modulation in the presence of Lorentz
violation. Using (15) and (16) this observable is

(ω+3 + ω−3 − 2ω0) =
1

7
Kpc̃

p
q + K

(2)
Z(obs)B

2 + ∆(obs) (17)

where K
(2)
Z(obs) and ∆obs are now the second order Zeeman coefficient and

correction from other systematic effects for the complete observable.
The first term of (17) characterizes a possible Lorentz violation in the

SME and is time varying when transforming the lab frame parameter c̃p
q to

the conventional sun-centered frame. The general form of that transformation
yields [32]

c̃p
q = B̃+C̃ω⊕cos(ω⊕t)+ S̃ω⊕sin(ω⊕t)+C̃2ω⊕cos(2ω⊕t)+ S̃2ω⊕sin(2ω⊕t) (18)

where ω⊕ is the frequency of rotation of the Earth. The coefficients B̃, C̃ω⊕ ,

S̃ω⊕ , C̃2ω⊕ , S̃2ω⊕ are functions of the 8 constant sun frame SME parameters
c̃p
X , c̃p

Y , c̃p
Z , c̃p

Q, c̃p
−, c̃p

TX , c̃p
TY , c̃p

TZ (see [32] for details) with the three c̃p
TJ

components suppressed by a factor vR/c ≈ 10−6 related to the velocity vR of
the lab due to the rotation of the Earth.

The observable we use (equation (17)) should be independent of any long
term (> few seconds) variations of the first order Zeeman effect and therefore
any sidereal or semi-sidereal variation of the observable would be the result of
Lorentz violation, if it exceeds the measurement noise and the limits imposed
by other systematic effects (see below).

The FO2 setup is sketched in Fig.5. Cs atoms effusing from an oven are
slowed using a counter propagating laser beam and captured in a lin ⊥ lin
optical molasses. Atoms are cooled by six laser beams supplied by preadjusted
fiber couplers precisely attached to the vacuum tank and aligned along the
axes of a 3 dimensional coordinate system, where the (111) direction is vertical.
Compared to typical clock operation [48], the number of atoms loaded in the
optical molasses has been reduced to 2 × 107 atoms captured in 30 ms.

Atoms are launched upwards at 3.94 m.s−1 by using a moving optical mo-
lasses and cooled to ∼ 1 µK in the moving frame by adiabatically decreasing
the laser intensity and increasing the laser detuning. Atoms are then selected
by means of a microwave excitation in the selection cavity performed in a bias
magnetic field of ∼ 20 µT, and of a push laser beam. Any of the |F = 3, mF 〉
states can be prepared with a high degree of purity (few 10−3) by tuning the
selection microwave frequency. 52 cm above the capture zone, a cylindrical
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copper cavity (TE011 mode) is used to probe the |F = 3, mF 〉 ↔ |F = 4, mF 〉
hyperfine transition at 9.2 GHz. The Ramsey interrogation method is per-
formed by letting the atomic cloud interact with the microwave field a first
time on the way up and a second time on the way down. After the interroga-
tion, the populations NF=4 and NF=3 of the two hyperfine levels are measured
by laser induced fluorescence, leading to a determination of the transition
probability P = NF=3/(NF=3 + NF=4) which is insensitive to atom num-
ber fluctuations. One complete fountain cycle from capture to detection lasts
1045 ms in the present experiment. From the transition probability, measured
on both sides of the central Ramsey fringe, we compute an error signal to lock
the microwave interrogation frequency to the atomic transition using a digital
servo loop. The frequency corrections are applied to a computer controlled
high resolution DDS synthesizer in the microwave generator. These correc-
tions are used to measure the atomic transition frequency with respect to the
local reference signal used to synthesize the microwave frequency.

The homogeneity and the stability of the magnetic field in the interroga-
tion region is a crucial point for the experiment. A magnetic field of 200 nT
is produced by a main solenoid (length 815 mm, diameter 220 mm) and a
set of 4 compensation coils. These coils are surrounded by a first layer of
3 cylindrical magnetic shields. A second layer is composed of 2 magnetic
shields surrounding the entire experiment (optical molasses and detection
zone included). Between the two layers, the magnetic field fluctuations are
sensed with a flux-gate magnetometer and stabilized by acting on 4 hexago-
nal coils. The magnetic field in the interrogation region is probed using the
|F = 3, mF = 1〉 ↔ |F = 4, mF = 1〉 atomic transition with a sensitivity of
7.0084 Hz.nT−1. Measurements of the transition frequency as a function of
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Fig. 5. Schematic view of an atomic fountain.
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the launch height show a peak to peak spatial variation of 230 pT over a range
of 320 mm above the interrogation cavity. Measurements of the same transi-
tion as a function of time at the launch height of 791 mm show a magnetic
field instability near 2 pT at τ =1 s as indicated in figure 6. The long term
behavior exhibits residual variations of the magnetic field induced by temper-
ature fluctuations which could cause variations of the current flowing through
solenoid, of the solenoid geometry, of residual thermoelectric currents, of the
magnetic shield permeability, etc.

The experimental sequence is tailored to circumvent the limitation that
the long term magnetic field fluctuations could cause. First |F = 3, mF = −3〉
atoms are selected and the |F = 3, mF = −3〉 ↔ |F = 4, mF = −3〉 transition
is probed at half maximum on the red side of the resonance (0.528 Hz below
the resonance center). The next fountain cycle, |F = 3, mF = +3〉 atoms are
selected and the |F = 3, mF = +3〉 ↔ |F = 4, mF = +3〉 transition is also
probed at half maximum on the red side of the resonance. The third fountain
cycle, |F = 3, mF = −3〉 atoms are selected and the |F = 3, mF = −3〉 ↔
|F = 4, mF = −3〉 transition is probed at half maximum on the blue side
of the resonance (0.528 Hz above the resonance center). The fourth fountain
cycle, |F = 3, mF = +3〉 atoms are selected and the |F = 3, mF = +3〉 ↔
|F = 4, mF = +3〉 transition is probed on the blue side of the resonance. This
4180 ms long sequence is repeated so as to implement two interleaved digital
servo loops finding the line centers of both the |F = 3, mF = −3〉 ↔ |F =
4, mF = −3〉 and the |F = 3, mF = +3〉 ↔ |F = 4, mF = +3〉 transitions.
With this method, magnetic field fluctuations over timescales longer than 4 s
are filtered in the comparison between the two transition frequencies. Every
400 fountain cycles, the above sequence is interrupted and the regular clock
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Fig. 6. Magnetic field instability as a function of integration time τ .
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transition |F = 3, mF = 0〉 ↔ |F = 4, mF = 0〉 is measured for 10 s allowing
for an absolute calibration of the local frequency reference with a suitable
statistical uncertainty. The overall statistical uncertainty of the experiment is
dominated by the short term (τ ≤ 4 s) magnetic field fluctuations (fig. 6).

We have taken data implementing the experimental sequence described
above over a period of 21 days starting on march 30, 2005. The complete raw
data (no post-treatment) is shown in figure 7, each point representing a ≈432
s measurement sequence of ω+3+ω−3−2ω0 as described above. Figure 8 shows
the frequency stability of the last continuous stretch of data (≈10 days). We
note the essentially white noise behavior of the data on figure 8, indicating
that the experimental sequence successfully rejects all long term variations of
the magnetic field or of other perturbing effects.

According to equation (16) the frequency of the observable should be the
sum of the putative Lorentz violating signal and of the second order Zeeman
and other possible systematic corrections. Figure 7 shows a clear offset of the
data from zero, which, using a least squares fit, is found to be (−5.5 ± 0.1)
mHz with a very slight linear drift of (−1.8 ± 1.0) × 10−7 mHz s−1.

For our magnetic field of 202.65 nT the second order Zeeman correction
of the ω+3 + ω−3 − 2ω0 observable is −2.0 mHz. This only partly explains
the offset observed in the data. The remaining part is most likely due to
the differential influence of the magnetic field on the mF = ±3 transitions,
resulting from slightly different trajectories of the atoms in the different mF

states and magnetic field inhomogeneities (residual first order Zeeman effect).
Such differences in the trajectories could be due to differences in the trapping
and/or launching of the atoms, related to the slightly different response of
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Fig. 7. Raw data of the measurements of (ω+3 + ω−3 − 2ω0) spanning ≈ 21 days.
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the Zeeman substates to the trapping fields. To check this hypothesis we have
looked at the time of flight (TOF) of the atoms as a function of mF . An offset
of ≈ 150µs between the mF = +3 and mF = −3 TOF is observed. We are
presently studying this effect in more detail (Monte Carlo simulations using
the magnetic field map, tests with mF = ±1 and mF = ±2 states, longer
term observation of the TOF difference and its variation, etc.) in order to be
able to completely characterize its influence on the offset in figure 7, and its
variation at sidereal and semi-sidereal frequencies.

In this paper we provide, as a preliminary results, only the values and
statistical uncertainties of the coefficients Cω⊕ , Sω⊕ , C2ω⊕ , and S2ω⊕ obtained
from a model of the form

1

2π
(ω+3 + ω−3 − 2ω0) = A t + B + Cω⊕cos(ω⊕t) + Sω⊕sin(ω⊕t) (19)

+ C2ω⊕cos(2ω⊕t) + S2ω⊕sin(2ω⊕t),

and the corresponding order of magnitude limits we expect for the c̃p param-
eters (cf. equations (17), (18)) of the SME.

Figure 9 shows the amplitudes Aω =
√

C2
ω + S2

ω of least squares fits for a
range of frequencies including the two frequencies of interest. We note no par-
ticularly significant peak at any frequency, and even less so at the frequencies
of interest. A least squares fit at those frequencies yields the results shown in

Fig. 8. Frequency stability of the last ≈ 10 days of the data in figure 7.
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table 9. The correlation coefficients between any two of the four parameters
in table 9 do not exceed 0.07.

Table 9. Results of the least squares fit of equation (19) to our complete data. Units
are 10−5 Hz.

Cω⊕ Sω⊕ C2ω⊕ S2ω⊕

−5.3 ± 7.3 −10.1 ± 7.2 −3.2 ± 7.2 2.7 ± 7.2

From equations (17), (18) and table I of [32] we deduce orders of magnitude
for the limits on the c̃p parameters of the SME (see table 3). We expect to
obtain limits on two combinations of the five parameters c̃p

X , c̃p
Y , c̃p

Z , c̃p
Q, c̃p

−

at a level of 10−25 GeV, and two combinations of the three parameters c̃p
TX ,

c̃p
TY , c̃p

TZ at a level of 10−19 GeV.
In summary, we have carried out an experiment using Zeeman transitions

in a cold atom 133Cs fountain clock to test Lorentz invariance in the framework
of the matter sector of the SME. In this paper we give a detailed description
of the experiment and the theoretical model, we show our data and statistics,
and we discuss our still ongoing investigation of systematic effects. Pending the
outcome of that investigation and a more detailed theoretical analysis of our
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Fig. 9. Fitted Amplitudes Aω for a range of frequencies around the frequencies of
interest (indicated by arrows).
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experimental results (explicit transformation of c̃p
q for our case), we provide

only first estimates of the limits that our experiment can set on linear combi-
nations of 8 SME matter sector parameters for the proton. These limits would
correspond to first ever measurements of some parameters, and improvements
by 11 and 14 orders of magnitude on others. A complete analysis (including
systematics) of our experiment with final results for the SME parameters and
their uncertainties will be the subject of a near future publication.

5 Conclusion

One hundred years after the publication of Einstein’s original paper [1] special
relativity, and its fundamental postulate of Lorentz invariance (LLI) are still
as ”healthy” as in their first years, in spite of theoretical work (unification
theories) that hint towards a violation of LLI, and tremendous experimen-
tal efforts to find such a violation. Our experiments over the last years have
provided some of the most stringent tests of LLI [6, 7, 8, 9], but have nonethe-
less only joined the growing number of experiments in scientific history that
measure zero deviation from LLI, albeit with an ever decreasing uncertainty.
In spite of that, experimental tests of LLI are continuing along two lines:
decrease of the uncertainties (see for example the contributions on rotating
Michelson-Morley experiments in this volume) on one hand, and new types of
experiments, e.g. the atomic clock test reported here, on the other.

In this paper we have presented a review of our recent Michelson-Morley
and Kennedy-Thorndike experiment (section 3), and reported first results of
our ongoing experiment that tests Lorentz invariance in the matter sector us-
ing a cold Cs atomic fountain clock (section 4). We have briefly described the
two theoretical frameworks used to model and analyze our experiments (the
Robertson-Mansouri-Sexl (RMS) framework and the standard model exten-
sion (SME)), and derived experimental limits on a number of parameters of
those frameworks. When compared to other experiments those limits are the
most stringent at present for several parameters (see tables 1, 2, 3).

The next generation of Michelson-Morley experiments are based on sim-
ilar technology as our experiment (section 3) or the equivalent approach at
optical frequencies [25], but take advantage of active rotation of the exper-
iment (see the corresponding contributions in this volume). Rotation of the
experiment (typically at about 0.1 Hz) allows much faster data integration
and places the signal modulation frequency close to the optimum where res-
onators are the most stable. It is expected that such experiments will lead to
order(s) of magnitude improvements on orientation dependent parameters in
the theoretical frameworks, but they present no advantage for only velocity de-
pendent parameters. For example, in the RMS rotating experiments are likely
to provide new, more stringent limits for the Michelson-Morley parameter
(PMM = 1/2− βMS + δMS) but no improvements on the Kennedy-Thorndike
one (PKT = βMS − αMS − 1). So we expect our (and other) present limits on
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PMM to be significantly improved, but we see no obvious way of improving
on our present limit on PKT in the near future.

Several improvements of our clock test of LLI in the SME matter sector
(section 4) are possible. For example, using the unique capability of our double
fountain (FO2) to run on both, Cs and Rb, we expect to be able to use Cs as
the SME sensitive species and Rb (which is less sensitive to the SME [32]) as
the magnetic field probe. In that way we should be able to perform magnetic
field independent measurements that could improve on our present results,
and allow access to other SME parameters that we are insensitive to with our
present set up. Also, rotation of the experiment could provide a method for
faster modulation of the signal but is unpractical in an Earth bound labo-
ratory. However, space missions with onboard atomic clocks are well suited
for such a test. In particular the European ACES (Atomic Clock Ensemble
in Space) mission [37], scheduled for flight on the international space station
(ISS) in 2009, seems very promising in this respect. It will include a laser
cooled Cs clock (PHARAO) with expected performance at least equivalent to
our FO2, but with the orientation of its quantization field axis modulated at
a 90 min period (ISS orbital period) rather than 24 hr as in our case. This
should allow for much faster data integration and significant improvement on
the limits presented here.
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