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Abstract

This article is a continuation of previous works by Bovier-Eckhoft-
Gayrard-Klein, Bovier-Gayrard-Klein and Helffer-Klein-Nier. The main
object is the analysis of the small eigenvalues (as h — 0) of the Lapla-
cian attached to the quadratic form
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Q

where Q is a bounded connected open set with C°°-boundary and f
is a Morse function on M = Q . The previous works were devoted
to the case of a manifold M which is compact but without boundary
or R™. Our aim is here to analyze the case with boundary. After the
introduction of a Witten cohomology complex adapted to the case with
boundary, we give a very accurate asymptotics for the exponentially
small eigenvalues. In particular, we analyze the effect of the boundary
in the asymptotics.
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1 Introduction

We are interested in the exponentially small eigenvalues of the Dirichlet re-
alization of the semiclassical Witten Laplacian on 0-forms

AD) = —h2A + |V f(2)] — hAf(x) .

Our aim is to extend to the case of a regular bounded open set 2, or more
generally a compact manifold with boundary, results which were previously
obtained in the case when 2 is a compact manifold or the case of R™. We
shall analyze the Dirichlet realization of this operator.

The function f is assumed to be a Morse function on Q (with no critical
points at the boundary). It is known (see [Sim2], [Wit], [CFKS], [HelSj4]
and more recently [CL]) that, like in the case without boundary, there are
exactly mg eigenvalues in some interval [O,C’hg] for h > 0 small enough,
where mg is the number of local minima in €2. This is strongly due to the
fact that the Dirichlet case is concerned. These eigenvalues are actually ex-
ponentially small as h — 0.

Moreover this can be extended (see [CL]) to Laplacians on p-forms, p > 1,
but this time some critical points of the restriction of the Morse function to
the boundary (which will be assumed to be a Morse function) will play a role.

Our purpose is to derive with the same accuracy as in [HKN] asymp—

totic formulas for the mg first eigenvalues of the Dirichlet realization of A

A similar problem was considered by many authors via a probabilistic ap—
proach in [FrWe], [HolKusStr|, [Mic], [Kol]. More recently, in the case of
R™ | A. Bovier, M. Eckhoff, V. Gayrard and M. Klein obtained in [BEGK]
and [BoGayK]l], accurate asymptotic forms of the exponentially small eigen-
values. These results were improved and extended to the case of a compact
manifold in [HKN].

The Witten Laplacian is associated to the Dirichlet form

Cy () s um / \(RV + V fu(z)|* dz .
Q
Note that the probabilists look equivalently at :

CSO(Q)BUHh2/‘VU( e~ 2@/ gy
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Bovier, Eckhoff, Gayrard and Klein considered this problem via a proba-
bilistic approach. They obtained, in the case of R” and under additional
conditions on f and Vf at oo, the following asymptotic behavior for the
first eigenvalues A, (h), k € {2,...,mo}, with Ay (h) =0, of A;?,)l :

hx oo ’det(Hessf (U'gO)))’
Ai(h) = _|)‘1(Uj(kz))‘ (1)
T ‘det(Hess f(Uj(k)))‘

2

xexp =3 (FUR) = FU)) x L+ O [loghl)) . (1.1)

where the U, ]go) denote the local minima of f ordered in some specific way, the
U;(llz,) are “saddle points” attached in a specific way to the U, ,E,O) (which appear

to be critical points of index 1) and Xl(UJ((l,z)) is the negative eigenvalue of
Hess f(U]((llz)).

Their article belongs to a family of works done by probabilists starting
at least from Freidlin and Wentzel (See [FrWe] for a presentation). The
first papers were only giving the asymptotic behavior of the logarithm of
the eigenvalues. The main contribution of [BoGayKl] and [BEGK] was to
determine the main term in the prefactor. The later [HKN] gave a complete
asymptotics in (1.1) and extended the results to more general geometries,
including cases when A;(h) # 0.

In the case with boundary, we observe that the function exp —% does not
satisfy the Dirichlet condition, so the smallest eigenvalue can not be 0. For
this case, we can mention as starting reference Theorem 7.4 in [FrWe], which
says (in particular) that, if f has a unique non degenerate local minimum
Tmin, then the lowest eigenvalue A;(h) of the Dirichlet realization ASS;L in Q
satisfies :

lim —h log A\ (h) = inf (f(z) = f(Zmin)) - (1.2)

h—0 €0

Other results are given in the case of many local minima but they are limited
to the determination of logarithmic equivalents (see Theorems 7.3 and 7.4 in
[FrWe]).

The approach given in [HKN] intensively uses, together with the tech-
niques of [HelSj4], the two facts that the Witten Laplacian is associated to



a cohomology complex and that the function x — exp —% is a distribu-

tion solution in the kernel of the Witten Laplacian on 0—forms permitting to
construct very efficiently quasimodes. We recall that the Witten Laplacian
is defined as

Af’h - df7hd},h + d},hdf,h ; (13)
where dy, is the distorted differential
dsp = e 1@ (nd,) el @M (1.4)

and where d7 , is its adjoint for the L?-scalar product canonically associated
to the Riemannian structure. The restriction of dy to p-forms is denoted

by dgf ,)l With these notations, the Witten Laplacian on functions is
0 0)*x 4(0
A — 0 q0) (15)
In the Witten-complex spirit and due to the relation
0) A (0 1 50
dAD) =AM 4l (1.6)

it is more convenient to consider the singular values of the restricted differ-
ential d}% : FO — FM  The space F'© is the my-dimensional spectral

subspace of Aﬁ, ¢ e {0,1},
F® = Ran 1;3(AY})) (1.7)
with I(h) = [0, Ch3] and the property’
0 0 0
Ly (AL, = dralii (AF) - (1.8)
The restriction d f,h‘ e Will be more shortly denoted by ﬂj(f,)l

¢ ¢
ﬁj(le = (d;,%)/m) . (1.9)

We will mainly concentrate on the case ¢ = 0.

In order to exploit all the information which can be extracted from well cho-
. . . . (0)

sen quasimodes, working with singular values of §;; happens to be more

efficient than considering their squares, the eigenvalues of A;?})l . Those quan-
tities agree better with the underlying Witten complex structure.

IThe right end a(h) = Ch% of the interval I(h) = [0,a(h)] is suitable for technical
reasons. What is important is that a(h) = o(h). The value of C > 0 does not play any
role.



The main result

Let us describe the result. We shall show that under a suitable generic
assumption (see Assumption 5.7), one can label the mg local minima and
introduce an injective map j from the set of the local minima into the set of
the m, generalized critical points with index 1 of the Morse functions in €.
At a generalized critical point U with index 1, we can associate the Hessians
Hess f(U), if U € Q, or (Hessf‘m)(U), if U € 092. When U € Q, A\ (U)
denotes the negative eigenvalue of Hess f(U).

Theorem 1.1.

Under Assumption (5.7), there exists hy such that, for h € (0, hg], the spec-
trum in [0, h%) of the Dirichlet realization of A% in €2, consists of mq eigen-
values A\i(h) < ... < Ao (h) of multiplicity 1, which are exponentially small
and admit the following asymptotic expansions :

~ det(Hess f(U"))
i(h) = ﬁIAl(Uf(IZ;) ) Z) )
T ‘det(Hess f(Uj(k)))‘

(1 + heg(h)) x

2 .
xexp—= (UL = FO™)) L U e,

and

2h1/2‘vf(U]((1]Z))| ’det(HeSS f(U,E,O)))’
L(h) =
w2 ‘det(Hess f}m(U;(l,z,))))

2 )
xexp— (FU) — FUN) . iU, o,

(1 + heg(h)) x

where c;.(h) admits a complete expansion : cj(h) ~ > > h™Cpm -

This theorem extends to the case with boundary the previous result of
[BoGayKl] and its improvement in [HKN] (see also non rigorous formal com-
putations of [KolMal, who look also to cases with symmetry and the books
[FrWe] and [Kol] and references therein).

About the proof
Asin [HelSj4] and [HKN], the proof will be deeply connected with the analysis

b}



of the small eigenvalues of a suitable realization (which is not the Dirichlet
realization) of the Laplacian on the 1-forms. In order to follow the same
strategy as in the boundaryless case, three main points have to be explained.
The first point was to find the right substitute for the Witten complex. Our
starting problem being the analysis of the Dirichlet realization of the Witten
Laplacian, we were led to find the right realization of the Witten Laplacian
on 1-forms in the case with boundary in order to keep the commutation
relation (1.6). The answer was present in the literature ([Schw], [Gu] and
[CL]) in connection with the analysis of the relative cohomology.

The second point was to get the “rough” localization of the spectrum of this
Laplacian on 1-forms. The analysis was performed in [CL], in the spirit of
Witten’s idea, extending the so called harmonic approximation. But these
authors, interested in the Morse theory, simplified the problem in the sense
that they use the possibility (inherent to Morse theory) to choose a right
metric and a right Morse function in order to simplify the analysis at the
boundary. We emphasize that we treat here the general case.

The third point is the construction of WKB solutions for the critical points
of the restriction of the Morse function at the boundary. For simplicity, we
restrict our attention to the case of 1-forms which is the only one needed for
our problem.

Structure of the paper

The paper is organized as follows. In the second section, we analyze in
detail the boundary complex adapted to our analysis. The third section is
devoted to the proof of rough estimates replacing the harmonic oscillator
approximation in the case without boundary (leading in particular to the
proof of the weak Morse Inequalities). In the fourth section, we give the WKB
construction for a solution of the Witten Laplacian on 1-forms localized at
a critical point of the boundary. The fifth section is devoted to the Morse
theory together with the right definition of saddle sets in the present case with
boundary. This permits us in particular to explain our main assumptions.
The sixth section is devoted to the construction of quasimodes and the proof
of the main theorem is given in the seventh section. Finally, we have given in
the appendix a partially independent treatment of the one-dimensional case,
which can be seen as a warm-up.



2 Some self-adjoint realization of Witten Lapla-
cians with boundary.

2.1 Introduction

We work here on a C* connected compact oriented Riemannian manifold
with boundary 02 and ) will denote its interior. After fixing basic notations
we specify the self-adjoint realization of the Witten Laplacian on which we
will focus and we assume in all the paper that the function f is a C* real
valued function on €.

2.2 Distorted differentials and associated Witten Lapla-
cians.

The cotangent (resp. tangent) bundle on € is denoted by T2 (resp. T§2) and
the exterior fiber bundle by AT*Q = ©p_(APT*() (resp. AT = @)_,APT(Q).
The fiber bundles ATOQ = @)_jAPTON and AT*0Q = &)_jAPT*9Q are
defined similarly. The space of C*, C5°, L?, H® ...sections in any of these
fiber bundles, E, on O = Q or O = 910, will be denoted respectively by
C>®(O; E), C(O; E), L*(O; E), H*(O; E). ... When no confusion is possible
we will simply use the short notations APC>®, APC§°, APL? and APH® for
E = APT*Q or E = APT*0). Note that the L? spaces are those associated
with the unit volume form for the Riemannian structure on € or 9 (2 and
0N are oriented). The notation C>(€); E) is used for the set of C> sections
up to the boundary. Finally since 99 is C*°, C>(); E) is dense in H*(Q; E)
for s > 0 and the trace operator w — w‘ 56 extends to a surjective operator
from H*(Q; E) onto H*"1/2(9Q; E) as soon as s > 1/2.

The differential on C5°(2; AT*Q2) will be denoted by d and more precisely

d® : o (0 APT*Q) — C°(Q; APTIT*Q).

Its formal adjoint with respect the L?-scalar product inherited from the Rie-
mannian structure is denoted by d* with

APV C0 (4 APHITHQ) — C3°(Q; APTHQ).

Those differential d and codifferential d* are well defined on C>=(Q2; AT*Q)
and satisfy dd = d*d* = 0.



For a function f € C*°(Q;R) and h > 0, we set
dpn = e DM (hd) SO and &, = SO (hd) T
The Witten Laplacian is the differential operator defined on C*°(Q; AT*Q)
Apn=dpdpn + dpndy )y = (dpn + dpy)%,
which means, by restriction to the p-forms in C>(; APT*Q2),
A = )

Note that dypdysy = 0, and d} ,d},, = 0 respectively, imply that, for all u in

C (4 APT*Q),

+1
AP Py = dP) AP (2.1)
and
APVl ey = dl APy (2.2)

Here are other relations with exterior and interior products and Lie deriva-
tives which will be useful :

dsp = hd+dfA; (2.3)

fn = hd" +ivy; (2.4)
dOix+ixd:£X > (25)
App=hd+d)V+|VI?+h(Los+ L)) - (2.6)

2.3 Stokes formulas.

Before writing the distorted Stokes formula, we recall some notations which
are convenient for boundary problems even with the euclidean metric on
2 C R™. We refer the reader to [Schw] for details.

For any w € C®(Q; APT*Q), the form tw is the element of C>=(9Q; APT*())
defined by

(tw)U(Xl>'-->Xp) :wa(XlT,'--,Xg) , v0'6697

8



with the decomposition into the tangential and normal components to 0€) at
o: X, = XiT @ana.

If n’ denotes the 1-form which is dual to the outgoing normal n, at o for
the Riemannian scalar product, we have

(tw)y = ip, (N2 Awy) .

Note that tw can be identified with j*w € C®(9€Q; APT*0Q)) where
j 090 — €1 is the canonical injection.
The non tangential part of w on 0 is defined by

nw=w| - tw € C™(0 APT*Q).
If necessary tw and nw can be considered as elements of C®(Q; APT*Q)) as
follows. A variant of the Collar Theorem which provides a diffeomorphism
between a neighborhood of 92 and 992 x [0, d[, § > 0 small enough, can be
written by taking for the normal coordinate the geodesic distance to 02,
x, = do(x,00) € [0,0[. Any form n € C®(0Q; AT*Q2) is then extended by
using the equation 0., 17 = 0 to 02 x [0, d]. After multiplication by a cut-off
function, this gives a form on €2, which does not depend on z,, in a neighbor-
hood of 0f2.
The Hodge operator x is locally defined in a local orthonormal frame (E, ..., E,)
by

(*wz)(EU(p+1), RN Eo.(n)) = 6(0) wz(Eg(l), ey Eg(p)) s

for w, € APTQ and with o € 3(n) preserving {1,...,p}.
We recall the formulas

*(xwy) = (=P Py, - Vw, € APTIQ

(Wi |wa)prre = fQ w1 A+, Vwi,wy € APL? (2.8)
and
*dH P~ = (=1)Pd Pk | xd®) = (=1 ey (2.9)
*n=tx, *t=nx, (2.10)
td=dt, nd =d' n. (2.11)

These formulas, combined with the Stokes formula,

Vw € C®(Q; APT*Q /dw—/jw—/ tw
o9

lead to the Green formula.



Lemma 2.1.
For all w € APH? and n € APH', we have

(dppw | dynm)ariice +(dypw | df ) av-112

= (Appw | vz +h [ (t7) A (3ndypw) — h/ (td}w) A () . (2.12)
G) o)

Proof.

Since C=(2; AT*Q)) is dense in AH*®, while both terms of the identity are
bilinearly continuous on APH? x APH!, the forms w and 1 can be assumed
C> up to the boundary.

We write

(dynw | dgpn) + (d}pw | dyn) = (hdw | hdn) + (hd*w | hd™n)
+ (df Aw | hdn) + (hdw | df An) + {df Aw]|df An)
+ (ivyw | hd*n) + (hd*w |ivsm) + (ivsw [ivsmn) .

Let us first compute
(df Nwldf Am) + (ivpw]|ivym) = (ivp(df Aw) +df A (ivgw) [n)
= {(ivsdf)w n) = (VI wln),
according to the identity
ix(aApB) = (ixa) AB+ (—=1)*% A (ix3) .
The Stokes formula, combined with

<(91 ‘ d*t92>xd$1 VANPIRAN dxn = ‘91 N ‘kd*e_g = ‘91 VAN (—1)deg02d(*¢9_2)
and
d(0y A %0y) = dby A (x05) + (—1)38%0, A d(x65) ,

where (dzy,...,dx,) is orthonormal with a positive orientation, yields for
degf; = degt, F 1 :

/8 A )] = (a0 02) = (01| ')
and

t [0 A (x01)] = (01 | ) — (d"0y | 6) .
o0

10



From the first identity we deduce :
(hd*w | hd*n) + (ivjw | hd*n) = (hP*dd*w |n) + (hdiysw | n)
- h/ t [(hd*w + iy w) A 7]
o0
— (W2dd"w | n) + (hdiww|n) — h / (6% ) A (x07)
o9
From the second one we get :
(hdw | hdn) + (df A w|hdn) = (R*d*dw|n) + (hd*(df Aw)|n)
+h/ £ [77 A %(hdw + df A w)
o9

= (h*d"dw | ) + (hd*(df Aw) |n) +h [ (67) A (ndppw) .
o0

Finally the relations (cf (2.3), (2.4))
ivfod + doiyy =Lyy; and d* o (dfA) + (df\)od" = Ly,
lead to
(dynw | dypm)arerre + (dpw | df pm) av-112
= (WP(d+d*) + [V P+ h (Lop+ Lop) w | n)arr2
+ h/m(tﬁ) A (bmdgpw) — h/ (tdy w) A (+n7) |

o0

where the differential operator h?(d+d*)>+|V f|*+h (Lvy + L%;) is nothing
but Af,h. |

Note that this writing does not depend on the choice of an orientation.
If p and psq denote the volume form in € and 02 and if the normal vector
ne is chosen according to (oqn)e (X1, s Xn—1) = po(ne, X1, ..., Xno1), a
simple computation in normal frames leads to

twl N *Nwy = <u}1 | ingCUQ>ApT;Q d,LLaQ s (213)

11



for wy € C®(Q; APT*Q) and w, € C=(Q; APHT*Q).
After choosing for n, the outgoing normal vector, (2.12) is equivalent to

(Appw, Marrz = (dppw | dppn)ar+irz + <d;,hw | d;,hn>AP—1L2

- h/ (in, drpw [ M) arrra(o) dpso + h/ (ny Ndjw|n)arrza(o) duae
20 20
(2.14)

which was used in [HelSj4] (see Lemma 1.1, p. 255, with the inward normal
vector).
As a consequence of (2.13) we get the following useful decomposition formula.

Lemma 2.2.
If n, denotes the exterior normal vector at o € 0, and (0f/0On)(o) =
ne - Vf(0) is the normal derivative of f at o, then the identity

||df7hw||ip+1L2+‘

T h(Log + L) | w)prge — h/
o0

* 2 *
Byl = 12 1 o2 [l 19 F 0
of
0 | = d 2.15
lhmn (5 ) (@) duom (215

holds for any w € APH' such that tw = 0.

Proof.

Again both sides of the identity are continuous on APH! and we can assume
w € C=( APT*Q).

We use the relation (2.12) with f replaced by 0, do, = hd and dg;, = hd*.
We obtain

2
|| yor o = W lldwl|Roer 2 — R} w32 =

(43) A *n(df Aw) — h /8 (tigy) A ()

de,hwnipﬂp + ‘

(App — Dop)w|w)arr2 + h/
0

= ((App — Dop)w | w)arre — h/ (ivyw |in,w)arra dpag -
o0

The first term of the right-hand side equals
(Apn = Dop)w|wWharre = IVl wlhnse +h{(Los + L3 p)w [@harsz -

For the integral term, we write

af

ivfw = %(O') i, w+ ivaw ,

12



where V7 f denotes the tangential part of the gradient. The equality
tivaw = ivatw =0

implies
<iVwa | ingw>AT;Q =0.

The condition tw = 0 also gives
(in,w [ in,w) = (w|w) ,

which yields the result. ]

Remark 2.3.
If instead of the condition, tw = 0, we assume nw = 0, then the integral term
on 002 in formula (2.15) comes with the sign +.

2.4 Tangential Dirichlet realization.

In this subsection, we specify the self-adjoint realization of AQ . in which we
are interested. When f = 0, it is known as the relative problem (see [Gu]
and references therein). The good property of this self-adjoint realization,
denoted by A?f is that it coincides with the Dirichlet realization on 0-forms
and preserves the complex structure :

DT +1) DT, —
(1 + A (p+1) ) ld%; = d%;(]‘ + Af,h (p)) 1
and
DT 1) —1),% —1),% DT, —
(1 -+ A (= ) ld;ljh ) = d;ljh ) (1 + Af,h (p)) ! 3

on the form domain of A T (),

The simplest self-adjoint realization is the Friedrichs extension AJQ L, start-
ing from Cg°(§2; AT*Q2), which leads, when (2 is regular, with the elliptic reg-
ularity property, to the domain D(AP,) = Hy(Q; AT*Q) N H*(Q; AT*Q).
The problem is that d;j; does not preserve this domain. We will see that
it is more natural for our problem to impose Dirichlet boundary conditions
only on the tangential components, while completing these conditions with
conditions on the codifferential. Other classical self-adjoint extensions are

13



possible with the same properties and we refer the reader to [Schw] and [CL]
for details.
We introduce the space

NPH = Hep (G APT*Q) = {w € HY (4 APT*Q); tw=0}.  (2.16)

In the case p = 0, it coincides with the standard space Hj(f2), while for
p > 1 the condition says only that the form vanishes on 02 when applied
to tangential p-vectors. Since the boundary 0 is assumed to be regular the
space

APCer = Cg,OT(Q; APT*Q) = {w e C™ (ﬁ, ApT*Q) D tw = 0}

is dense in APHjp. The next construction is a variant of known results in
the case f =0 (see [Schw]). We will use the notations

Dyn(w,n) = (dpw | dypm)arerrz + (dypw | dppn)ar-1r2
and

2 . 2
Dyn(w) = Dpn(w,w) = ldpnwllyper 2 + || di | s o -

Proposition 2.4.

The non negative quadratic form w — Dy p(w) is closed on APH . The as-

sociated Friedrichs (self-adjoint) extension is denoted by A?f’(p). Its domain

18
D(A?;{’(p)) ={ue \’H? tw=0and tdjw=0}
and we have

DT , - AP,

DT,
Yw € D(AY} @y A o @

Proof.
First we observe that the space APH&T is isomorphic to the direct sum

APH} @ nAP HY?(0Q; APT*Q) |
with continuous embedding. Since 0f2 is regular, one can indeed construct a
right inverse R to the trace operator 7o : APH' — APHY2(9; APT*Q), so

that any u € APH' can be written as the sum

u = (u— Ryyu) + Ryu ,

14



with (u — Ryyu) € APH}. Once the operator R is chosen, the previous
decomposition gives an isomorphism u — (u — Ryyu,You) from APH(}’T to
APH} @ nAPHY?(0; APT*Q)). Hence its dual is the direct sum of APH !
and nAP H=Y2(9; APT*Q) -

(APHJ ) = APH™' @ nAPHV2(0Q; APT*Q)

We have to check that w — Dgf,’ ,)l(w) +C' ||w||3p 2 is equivalent to the square of
the AP H' norm on APHj . By (2.3)-(2.6) this is equivalent to the same result
for f =0 and h = 1. This last case is known as Gaffney’s inequality which
is a consequence of the Weitzenbock formula (see [Schw], Corollary 2.1.6).
Hence the identity

Vn € APHyp, Df)(nw) = (n, APw)

defines an isomorphism A®) : APH{] ;. — (A?H{ ;). The self-adjoint Friedrichs

p)

extension A?f’( is then defined as the operator

D(A?’Zv(p)) = {w € APH&T, AP, € APLQ} 7 A?;7(p)w — AW,

It remains to identify this domain and the explicit action of A®). If 1 belongs
to D(A?,::’(p)), we use first the Green formula (2.12) in order to get

Mo € PG, (AP ) = Dfj(w.m) = (Afjw|n)
The inequality
DD (@, )| < Clwllyor 1oz -

together with the density of APC§® in AP Hy implies that Agf })Ln € D'(Q; APT*Q2)
is indeed the AP H~' component of A®)y,

Assume that w belongs to APHj, N APH?; then the Green formula (2.12)
gives

h / (tdf, 7 w) Axnij = DP(w,n) — (AL)w | m)rorz , V0 € APHi .
o0

By density, one can define, for any w in APH&T such that A;’; ,)lw € API?, a
trace of td} ,w by the previous identity, observing that the right-hand side

15



defines an antilinear continuous form with respect to n. With this generalized
definition of 1:0l§f77 Zw we obtain

D(AP) = {w e Aj H', Alfw € APL? and tdfl, w0}
The last point consists in observing that the boundary value problem

APu=g, tu=g;, tdf " u=g (2.17)

satisfies the Lopatinski-Shapiro conditions. At the principal symbol level
(h > 0 fixed), these conditions are indeed the same as for

(dd* + d*d)Pu=g, tu=gy, tdPV*u=gs.

This is checked in [Schw|. Hence any solution to (2.17) with g € APL?
g1 = g» = 0 belongs to APH?. 1

Proposition 2.5.
For any p € {0,...,n}, the self-adjoint unbounded operator of domain

D(Aff‘”’) = {w € AH?, tw=0, td;{’;l)’*w = 0} and defined by

Ajif,{v% — Ang;w  Vw € D(Aﬁ,’{v@)) :

has a compact resolvent.
Moreover, if z € C\ Ry, the commutation relations

DT,(p+1)\— DT, -
(- ARt = e - AP,
and
DT, (p—1)\—1 4(p—1),* —1),% DT,(p)\—
(Z_Af,h (» )) ld;{’h ), :d%h ) (Z_Af,h (p)> Ly
hold for any v € APH{ .

Proof.

The domain of the operator is contained in AP H?, which is compactly em-
bedded in APL?. This yields the first statement.

Since APCG% is dense in APHjp, it is sufficient to consider the case when
v € APCg%. For such a v and for z € C\ Ry, we set

u=(z— A?’Z’(p))_lv.
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Due to the ellipticity of the associated boundary problem (the Lopatinski-
Shapiro conditions are verified) u belongs to C>(€2; APT*(2). The commuta-
tion relations (2.1) and (2.2) can be applied since here f € C*°(%;R) :

1
(z — Agf,j ))dgf,)lu = d}p,)l(z — A}p,)l)u = d%v (2.18)
and
—1 —1),* —1),* —1),*
(z — Agfh ))dgfh Iy = dgfh (2 — A}p;)u = dgfh P (2.19)

Since u € D(A?,::’(p)) , we have tu = 0 and td},u = 0. Since t commute with
the differential, we get

t dypu = hd tu+ (tdf) A (tu) = 0.
For the tangential trace of the codifferential, we write
tdy, (dypu) = 2tu — tv — tdypdy u = 2tu — tv — dyptdy u =0

Hence d%u belongs to D(A?,::’(pﬂ)) and the identity (2.18) yields

d(p)

f,h(z _ A?;’(p))_lv = dppu= (2 — ADT’(p+l))_1df7hU 7

f’h
which proves the first announced commutation relation.
For the second one, the verification that d%,:l)’*u belongs to D(A?;’(p_l)) is

even simpler. First the property, td;’j . D =0, is given by u € D(A?f’(p ));
then td},(d},u) = t0 = 0. We obtain

AP0 (2 = APy = P = (2 = ATPETD) LR D

Remark 2.6.
Note that the above commutation relations cannot be extended to v € APH?.
Assume for example that v is C* wup to the boundary. Starting from the
identity

v=(z = AR - A e,

we can write
_ i ADTv(p) -1, d(p)%d(p) _ ADT,(p) -1
vo=2z(z fn )0 —dpymdg (2 )"

b f’h
s o
= 2uy — d;’j,)l’*uQ - d;; Jug



with the relations u, € D(A?,:f’(p)), Uz = d%})l(z - A?Z’(p))_lv;
and us :d;;jgl),*(z_ADT,(p))—lv'

fh
Now the commutation relations would imply us € D(A?g’(pﬂ)) and

uz € D(A7PY),
The form v should then satisfy on the boundary

tv = ztu1 — tdfljh’*UQ - d%’;l)tug =0.
From Proposition 2.5 and Stone’s Formula we deduce the

Corollary 2.7.
For any Borel subset E C R, the identities

LA N dPw = dP)1p(A7 )

f:h f:h
and
DT, (p—1) 1), —1),% DT,
1 (Afh J(p— )d(P _ d%h ) 1E(Af,h (P))U

hold for all v € APH{ .

In particular, if v is an eigem)ector of A?f’(p)

corresponding to the eigenvalue

A, then dgcpzlv (resp. d}h “v ) belongs to the spectral subspace Ran 1{,\}(ADT (pH))

(resp. Ran 1{)\}(ADT(p ).

Proposition 2.5 and Corollary 2.7 were stated for p-forms v € APHjj (),

belonging to the form domain of ADT ®) Tt is convenient to work in this

framework because the multlphcatlon by any cut-off function preserves AHg () :
(W S AH&,T(Q)u X € Coo(ﬁ» = (\w € AH&,T(Q)) )

while this property is no more true for D(AP]). In this spirit, we will often
refer to the next easy consequence of the spectral theorem.

Lemma 2.8.

Let A be a nonnegative self-adjoint operator on a Hilbert space H given as the
Friedrichs extension of a closed quadratic form qa with form domain Q(A).
Then for any a,b € (0,400), the implication

(24(w) < @) = (|[1proe(Au]” < 2)

holds for any u € Q(A).
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2.5 Boundary reduced Witten complex

We end this section with the introduction of the reduced complex which is
standard in the boundaryless case since Witten (see [Wit], [Sim2], [CFKS],
[HelSj4] and the book [Zh]). This will motivate the preliminary analysis given
in the next section. B

Let us assume that the dimension mS of F®) = Ran 1[07h3/2)(A?$’(p )Y is
independent of h € (0, hg) for hg > 0 small enough. The previous proposition
says that 8Y) = d¥)| ., and g¥)" = d¥, "
complexes of finite dimensional spaces :

s (P =0,...,n) define two

6(0) ﬁ%i 6("1—1)

0— FO 2 p@) Lh ) (2.21)
(0),%* (1),* (n—1),x .
0 FO " po e P e g

If b?, p € {0,...,n}, denote the Betti numbers of the 5](32 complex, then the
polynomials,

M(X) =) miX? and B(X)=)» blX",

p=0 p=0

satisfy
M(X)-B(X)=(01+X)Q(X), (2.22)

where the polynomial Q(X) has non negative coefficients.

In the boundaryless case, the numbers m, are exactly the number of criti-
cal points with index p and this is the core of Witten’s approach to Morse
inequalities. In the boundary case, it is no more true. The next section
explains the role of the boundary conditions on the spaces F®).

3 First localization of the spectrum.

3.1 Introduction

)

In this section, we check that the number of eigenvalues of A?;{’( smaller

than h*/? equals a Morse index m? which involves in its definition the bound-
ary condition. For this we need a first localization of the eigenvectors. Al-
though the results presented here are closely related to those of [CL], we need
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additional information and technical analysis for the following reason :
When one is interested only in the Morse theory the metric plays no rele-
vant role and it is possible, without loss of generality, to assume that it has
a simple form at the critical points. This simplification, which leads to a
much easier analysis, was used by many authors [CFKS]|, [CL], [Bis|, [Bur],
and [Hel]. Since we are interested in quantitative results with a prescribed
metric from the beginning, the dependence with respect to the metric has to
be analyzed carefully. One difficulty comes from the fact that the boundary
condition and therefore the domain of A;’; ,)1 depends on the metric g.

3.2 Morse-Witten theory for boundary value problems.

In order to make the connection between the tangential Dirichlet realization
of the Witten Laplacian AP}" and the Morse theory, we assume additional
properties for the function f up to the boundary 0f).

Assumption 3.1. B
The real valued function f € C*(Q)) is a Morse function on ) with no critical
points in 0S). In addition its restriction f‘an is a Morse function on 0S2.

With this assumption, the function f admits a finite number mg of crit-
ical points with index p in €2. Those numbers have to be modified for the
boundary problem according to [CL] in order to take into account eigen-
vectors which possibly concentrate (as h — 0) on 0. Note first that the
assumption that there is no critical point on 02 implies that the outgoing
normal derivative 0, f(U) is not 0, if U is a critical point of f| .

Definition 3.2.

For ¢ € {0,...,n— 1}, the integer m?f}r is the number of critical points U

of f‘aﬂ with index € such that O, f(U) > 0 (with the additional convention
o

m%i, =0).

Forp e {0,...,n}, the integer mg is defined as

Q_ . Q o9
m, =m, +m," .
We will prove the

Theorem 3.3.
Under Assumption 3.1, there exists hg > 0, such that the tangential Dirichlet
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realization of the Witten Laplacian A?f introduced in Subsection 2.4 has, for
h € (0, ho, the following property :

For any p € {0,...,n}, the spectral subspace F®) = Ranl[ovhs/z)(A?’Z’(p)) has
rank : dim F®) = m?.

Moreover the Betti numbers b? are homotopy invariants and satisfy the ho-
mological relations (2.22).

Remark 3.4.

a) The role of the condition O,f(U) > 0 can be easily understood by con-
sidering the one-dimensional problem with f(x) = x on the interval [0, 1].
On 0-forms, A?g’(o) corresponds to a Dirichlet realization, while A?f’(l) cor-
responds to a realization with an h-dependent Robin boundary condition

hoyu — (0. f)u = 0, where the function u(x) has to be identified with the
L-form u(z) dz.

b) With the normal boundary conditions nw = 0 and ndsyw = 0, the num-
ber mgfll + has to be replaced by mgflL_ , which corresponds to the condition

O f(U) <0 (see [CL)).

We shall use a similar technique to the one presented in [Sim2], [CFKS]
and [CL] by making rather rough estimates in terms of quadratic forms.
We first consider a model half-space problem which permits, after a care-
ful treatment of the metric, to separate tangential and normal coordinates.
The localization process and the proof of Theorem 3.3 will be achieved in
Subsection 3.4.

3.3 A model half-space problem.

We consider in this subsection a half-space model problem which will be
used in the localization of the eigenvectors of A?f on © and will provide
quasimodes.

We start first with some results on R*, which will be applied later with
k=mn-—1.

3.3.1 Witten Laplacian on R* with one low-lying eigenvalue.

The metric g on R¥ is a C* metric which equals the euclidean metric outside
a compact set K.
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Assumption 3.5.
The function f is a Morse C* real valued function and there exist C; > 0
and a compact K such that :

Ve e R\ K, |Vf(z)|>Cr! and  [Hess f(z)| < C1 [VF() . (3.1)

Note that the above assumption ensures that f admits a finite number of
critical points and m, will denote the number of critical points with index p.

Proposition 3.6.

Under Assumption 3.5, there exist hg > 0, ¢g > 0 and ¢y > 0 such that the
following properties are satisfied for any h € (0, ho| :

i) The Witten Laplacians Ay, as an unbounded operator on L*(RF; AT*RF)
is essentially self-adjoint on C3°(RF; AT*RF) .

1) For any Borel subset E in R, the identities,

1
LA = df1s(Af)u,
and (3.2)
—1 Sk Sk
(AL ) = dfy (AT,

hold, for any u belonging to the form domain of A%.

In particular, if v is an eigenvector of A%/)z associated with the eigenvalue \,
then d%,)lv (resp. d%;l)’*v) belongs to the spectral subspace Ran 1{>\}(A§f}fl))
(resp. Ran 1{>\}(A5£I;h_1))).

ti1) The essential spectrum Uess(Agflj,)l) is contained in [cy, +00).

iv) The range of the spectral projection 1[07coh)(A§f})L) has dimension m,, , for
all h € (0, h) .

Proof.
We give the proof for the sake of completeness (see also [Jo]).
i) The operator

Aﬁh = —h2A + ‘I/(x) = df,hd?h -+ d}kﬁhdf,h

is non-negative on Cg°(R¥; AT*R¥) and the matrix-valued function ¥(z) is
C*>. By Simader’s result (see [Sima|, [He3]), Ay, is essentially self-adjoint
on C°(R™ 1 AT*RF).

ii) The proof is the same as in Proposition 2.5 and Corollary 2.7 with
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APC3 () replaced by APCe°(RF). By i), APC5°(R¥) is dense in D(A%) and
therefore in the form domain of A;’j ).

iii) The localization of the essential spectrum is a consequence of our assump-
tions which imply the existence of C' > 0 such that, for all u € APC°(CK),

1
(u | AFju) > Gu | Afw) + llull® ~ Chlul®.

When h < hg, with hg = we get

1

202
1 [ee]

(u| Afyu) > S5 llull®, Vu € APCE (LK),

and iii) by using Persson’s Lemma.

iv) The previous inequality combined with a simple partition of unity argu-
ment shows that any normalized eigenvector v, associated with an eigen-
value Ay, in [0, coh) of Agf ,)l is localized in a neighborhood of K. Take indeed
xi € C*(R*), i = 1,2, such that x; € C§°(R¥), xy1 =1 in a neighborhood of
K, x3+ x2 =1, and write :

Ml lonl 2 = Ocaton | AV xawn) + Ocaton | AVxawn) — 12 3 (Wil

i=1,2

This leads, for h small enough, to

Ix2tn | < 20\, +2C (Z rfé}?WXi(x”Q) h* < 4Cch,

i=1,2
L= [¢n]] < (14 C'W)|Ixavnll
and

Oavn | AP xatn) < C"h2 + coh < 2eoh |[yn]|* < C"eoht [[xatinl)” -

Hence the problem is reduced to the case of a boundaryless compact manifold
presented in [CFKS] and [HelSj4]. With ¢y > 0 small enough, their related re-
sults, which rely here on harmonic approximations around the critical points
of f, and the two previous estimates imply that v, has to lie within a dis-
tance less than 1/2 from a finite dimensional space with dimension m,,. This
yields

dim Ran 1[0760h)(A§f})L) =m, . (3.3)
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We will need the following version of those results in the specific case
when f admits a unique critical point with index py.

Proposition 3.7.

If the Morse function [ satisfies Assumption 3.5 and admits a unique critical
point at x = 0 with index py, so my, = Opp,, then there exist hy > 0 and
co > 0, such that the following properties hold for h € (0, ho| :

i) Forp # po, A ( . > cohld .
i) [f¢h0 s a normalzzed ergenvector of the one dimensional spectral subspace

Ran 1[0,coh)(A%2)) , it satisfies
dpgh =0, dP Vgl =0 and AV =0,
so that Ran 1[0,Coh)(A§c h)) = Ker A po . Moreover
(AT \ {0} € [eoh, o0) -

i11) If x € C°(R¥) satisfies x = 1 in a neighborhood of 0, then there exists
Cy > 1, such that, for all h € (0,ho/C,), the inequality,

1-AR @ —x) > -],
holds in the sense of quadratic form on AP H'(IR¥).

Proof.
One uses first for i) the property that : dim Ran 1, cOh)(A;p,)l) = m,. Let us

now show ii). Assume that ¢ is an eigenvector of A(p ) with eigenvalue
An € [0,¢oh). If df (po) » Yh was not 0, it would be an eigenvector of A pOH) with

eigenvalue \j, € [O,COh) . Hence dgpy) = 0 and similarly d p . 1 b= 0.
This implies A\, = 0.
For iii), we note that

Af) = V@) (1= Ch),

with |V f(z)]> > ¢, > 0 for = & supp x.
This implies

(1— AL 1~ x) = e (1-Ch) 1 =],

for h € (0, hp) and the result holds for C, > 0 large enough and hy small
enough. |
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3.3.2 Small eigenvalues of the half space problems.

We work here on R” = R" ! x(—00,0). We assume that there are coordinates
(', x,) such that the metric g = > ", gij(v)dx;dz; satisfies

Gin = Ggn; =0 fori<mn (3.4)
and
Vo € ]RTE\Kl, Bxg”(x) =0 s (35)

for some compact set K; C R™. In this paragraph, the coordinates (z, z,,) are
fixed while different metrics on R™ are considered. The notation G(-) will be
used for the matrix valued map x — G(x) = 'G(z) = (9:5(2))i; € GL"(R),
which is assumed to be a C* function. According to the standard notation,
the coefficients of G(z)~! are written g (x).

We also consider a function f which has a specific form in the same
coordinates (z/, x,,).

Assumption 3.8.
The function f € C*(R™) satisfies :

i) The estimates |V f(x)| > C~t and |0%f(x)] < Cy hold, for all z € R™
and all o« € N¢, o # 0.

ii) The function f is the sum f(a',x,) = =% fi(z,) + 5f-(2'), where there
exists C; > 0 such that :

Cr' < 0u, fo(za) < Cr

and where f_ is a Morse function on R"™! | which satisfies Assump-
tion 3.5 for the metric Zf]_:ll gi;(2',0)dx;dz; and admits a unique crit-
ical point at x' = 0 with index pq.

The boundedness of |02 f|, 1 < |a] < 2, avoids any subtle questions about
the domains.

Proposition 3.9.
Under Assumption 3.8-i), the unbounded operator A?f on L*(R™; AT*R"),
with domain

DAPF) ={we AH*R"), tw=0, td}j,w=0},
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18 self-adjoint.
If E is any Borel subset of R, the relations

AT a8 155,
and (3.6)
Le(AF ) dftu = df) (AT
hold for any u € APH&T(RY_L) .

Proof.
The uniform estimate on V f permits the same proof as for Proposition 2.5
and Corollary 2.7 (Here C5%- denotes the space of C*° compactly supported

functions in R™ with a vanishing tangential component on {z, = 0}). ]

We are looking for a result similar to Proposition 3.7 for the boundaryless
case. One difficulty here comes from the metric which, although diagonal in
the coordinates (2, x,), is not constant. The general case can be reduced to
a simpler situation where g;;(z) = ¢;;(2’) with g, = 1 after several steps.
We need some notations.

Definition 3.10.
For a metric g which satisfies (3.5), the corresponding H*-norm on AP H*(R™)
is denoted by || ||zprs , and the notation || || xp g 18 kept for the euclidean met-
ric ge = Y5, dxi.

Similarly, the quadratic form associated with A?Z’(p )

18 written

*, 2 2 n
Dgufvh(w) - } df,ZwHApfll:Q’g + ||df7hw||Ap+1L27g Y vw E ApH(:]L,T(]R—) Y
where the codifferential d;ih also depends on g .
A K-set is a set of metrics g which satisfy the conditions (3.5) and which is
compact for the C*(Ky)-topology.

A K-set is a set of metrics g which satisfy the conditions (3.5) and so that
G(x) and G(x)~! are bounded in the C*(K})-topology. Note that, when the
metric g lies in a fixed K-set (h = 1), the H*-norms are uniformly equivalent
to the norm associated with the euclidean metric g.. The required accuracy
while comparing the quadratic forms D, ; needs some care.

The first result provides a reduction to the case 0,,G = 0.

26



Lemma 3.11.

Let g1 and go be two metrics which satisfy (3.5) and coincide on {x, = 0}.
Let f be a function satisfying Assumption 3.8. There exist constants Cra > 1
and hg > 0 such that the inequality,

Dyo,rn(w) 2 (1 = C12h®) Dy, (W) = Croh”/® ||l 3 2 (3.7)

g1 ?
holds for w € APHO{T(R’E) , with p € {0,...,n} and h € (0, hy), as soon as
suppw C {z, > —Coh**}.

Proof.
The matrices G(x) and Go(x) associated with ¢; and g, in the coordinates
(2, x,,) satisfy the estimates

|G1(2) "' Ga(x) — Idga| < Ch*®

for all z € {z, > —Coh?/®}. Hence, for any differential form n € AL* sup-
ported in {z,, > —Coh?°} , the two L*norms differ by

2 2 . 2 .
19l 2 = 01322 5,] < €12 min {3 e, 0 = 1,2}
The relative error term has the right order, so that any L?-norm can be used.
Except for the conclusion, any of the two L?-norm is simply denoted by || ||.
The comparison of Dy, fp,(w) and D, r,(w) amounts to finding a good esti-
mate for || (d7y — d}5?) wl|. Let w = 37, wyda’ be a p—form supported in
{Z‘n Z —Coh2/5} .
The first point is to observe the inequality

(@ —di) wlP < C (mz 0n,(aon) ) + a9V £l + h2Hw||2> .
o1

(3.8)
The second point is to use the Dirichlet realization of A;’; ,)1, corresponding to
Dirichlet boundary conditions on all components. The Weitzenbock formula
(actually we only need the structure of the Laplacian and not the detailed
intrinsic expression) gives :

A;%,i = —h"> "V, g7(x)V; + h’Ruy + [V f(@)]* + h (Lys + L) - (3.9)
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The first term is A% times the Bochner Laplacian, while the Ricci curvature
Ry and the term (Lyy + LG;) are tensors with bounded coefficients. We
remind that the covariant derivative V; on forms is expressed in terms of the
partial derivative d,;, the Christoffel symbols FZI and of the gradient Vz,,
of the coordinate function z,, :

Vi=0u,— Y T gjmda; A (ivs,.) - (3.10)

j7m76

By writing the two sides of (3.9) as quadratic forms on APHj(R™), we get,
for any p-form @ such that (I)‘{m . 0, the estimate

<h2(z 18e(@r) %) + IHVf\&?IF) < C (ldpaoll® + dzg ol + hll@]?) -
0,1
(3.11)

We apply this inequality with @ = x,w, which satisfies the full Dirichlet
condition. With (3.8), this leads to the inequality :

I (g = d) ol < C (ldgnrnol + Ny sl + gl + H2]1w]?)
(3.12)
It remains to commute z,, and dy; or d;% and we get, using also our as-

sumption that |z,| < Ch% in suppw,
* * 4 4 *,q. 9
I (@ - ) wll? < © (i ldpuol® + ANl + nE o) . (313
We conclude with

_ - * 2
(1= CR®) Dy ) = (1= W) {[lageels o+ a3 e,

2 |

d;’,%w HiLQ,gl
> (|

1 *,092 *,91 2
> (1 - hQ/S)Dgl,ﬁh(w) + (1 - W) H(dfzz - df,% )WHALQ,gl )

2
+ ldppwllype g,

2
A5y, = @58 = A5l o, )+ Dol sog

and estimate (3.13). ]

The second result permits to consider again a simpler metric with
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Lemma 3.12.
Let g1 and go be two conformal metrics which satisfy (3.5) and :

go = 650(@91 .

Let f be a function satisfying Assumption 3.8. Then there exist constants
Ci2 > 1 and hg > 0, such that the inequality,

Vw € APHLA(R?), Dy a(w) 2 Ci Dy pn @) — Cioh? [l 1a,, .+ (3.14)

g1

holds, for all p € {0,...,n} and all h € (0, hy) .

Proof.
For a given metric g = szzl gijdx;dz; , which satisfies property (3.5) and
G = (9ij)1<i j<n , the normalized volume form equals

V,(dz) = (det G(z))"* day A ... A day,

the pointwise scalar product of two p-forms equals

(wlng(z) = Z wi(Tp(G™H )i ()

#I=p

with I',(A) = A® ---® A, and the Hodge operator is given by

w A (kg M) (@) = (W[ m)g(2) Vy(dz) -

The term which requires some care in the conformal change of metric in

Dy rn(w) = }

2 2

*79
df,thApflL27g + de,thAp-‘—lLQ’g
is the first one, because dy} depends on g. We have indeed

djjw = eI M(—1)P %y dxg e IMw, Vw e APH! .
Let g1 and g2 be as above. Our assumptions imply the uniform estimate

sup |p(z)] < +00.
xE@

The previous identities give, for two p-forms w and 7, the pointwise relations :
(W] n)ga(w) = PN w )y, (x)
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and

w A (*ggn) = <w |ﬁ>gzvg2 (dx)
= e w6

ne(x)

Vi (d) = el P890 A (1)
which yields
*goT] = el PH3)e@) *gr 1] -
Let us compute first with f = 0 and h = 1, the pointwise scalar product
(d%w | ") g, () = e~ P VPO ("2 | d7920) ()
= 6—(p—1)<p(:l?) <~k d Ky W | *go d *go 77)91 (I)

= 0y (P [t i, (€5 0
— o~ (D) 22(p-1-n/2)¢ <d*791( (p+n/2)¢ ) |d*’gl( (p+n/2)e ()77)>91(x>‘

Hence we get

(d"92w | d"92n) g, (2)V, (dx)
_ 6(p—1)4p(r)<d*,gl ( (p+n/2)p ) | 91 ( p+n/2)so(r)n)>gl (x)Vy, (dx).
and
||d*’gsziL2792 > 6_(p_1)u ||d*7gle?\L2,gl )

With f and h € (0, hg), this gives the existence of C' > 0 such that :

e P S S W
> _(317 1+n)p H ’91 + hlv (p+n/2)¢ wHALQ o
> o7 } dyyw HAL2 - on’ HwHALQ’f“

Proposition 3.13.

Assume that the metric g satisfies (3.4) and (3.5) and let f be a Morse
function satisfying Assumption 3.8. Then there exist constants hg > 0, ¢o > 0
and ¢, > 0, such that the self-adjoint operator APT 7 satisfies the following
properties for h € (0, ho| :

1) The essential spectrum UESS(A}DE’@ )) is contained in [cy, +00).
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i) For p € {0,...,n}, the range of the spectral projection 1[0,Coh)(A?,?’(p))

has dimension

5P7P0+1 Zf a:cnf(o) = _%aznf-i-(o) >0 )
0 if 00, f(0) = —10,,f1(0) < 0.

iii) In the case when 9y, f(0) = —30,, f+(0) > 0, the spectral subspace asso-

po+1)

ciated with the small eigenvalues of A?Z’( equals :

Ran Tpeon (A7, ") = Ker A7 = €t

where
™ =l A (e ) |2 = O(RMYO)

and %’,}0 belongs to the kernel of an (n — 1)-dimensional Witten Laplacian

(po)

g\ f~/2:h
Rr-L,
iv) For any x € C°(R™) such that x = 1 in a neighborhood of 0, there exists
Cy > 0 such that the lower bounds

in a metric ¢', which is conformal to ¢ = ZZL]_:ll gi;(2',0)dx;dx; on

(L=)A7 (=) = ¢ 1 =X, 0<p<n,
hold, for any h € (0,ho/CY), in the sense of quadratic form on AP Hj (R ).

Proof.

The clue of this result is an accurate lower bound for the quadratic form
Dy, ;n(n), when evaluated for n such that suppn C {z, > —Coh**}. By
Lemmas 3.11 and 3.12, one can find a metric g, which satisfies (3.4) and
(3.5), with G(z) = G(a') independent of the z,-coordinate, jn, = 1 and a
constant C' > 1 such that

Dy 5n(n) = C ' Dy () = CL™> |nll3 25 - (3.15)
Take two cut-off functions y; € C>*°(R), such that x; € C°(R), x1 =1 in a
neighborhood of 0 such that ¥? + Y2 = 1. This partition of unity gives, for
any w € AH&T(RE) ,

Dy, 11(w) 2 Dy, pa(Ra (A Pwn)w) + Dy, pa(Re(h~*Pan)w) — ChY w2y -
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Since |V f(x )\ C~! on R" , the second term is bounded from below by

HX2 h=2/5x wHAL2 Hence we get

o o 2
ng,h(w) Z Dg,f,h(Xl (h Q/S.Tn)W) - Oh6/5 HX 2/51.”)(")”/\[,279
C’_ 5 2
+ =5 R (hPan)wlfy 12,
Finally after changing the constant C' > 1, the inequality (3.15) yields
Dy sn(w) > C Dy p (%2 (2o, )w) — CHO || 50 (b, w|”
s 2
+Ct ng(h 2/5xn)wH , (3.16)

where the L2-norms in the right hand side can be computed with the metric
g or g while possibly adapting the constant C'. Here and in the sequel, we
omit the subscript (AL?, g) for L?-norms.

Now the problem is reduced to the analysis of Dj ¢ with the metric g.

(a) The case n = 1.
We have z = z,, € R_, f(z) = —3f(z,). Here the metric is § = da?. We
keep the reference to the index n for the later application.
The space A°Hj (R_) is simply Hg(R_), while

AHyp = {a(e,) de, , o € H(R_)} .

The identity (2.15) reads :

V3 € Hy(R-), Dz, j24(8) = h*[|0:, 5] + H%J‘lﬁH +5 < a;, fi(za)B ] B)

for the O-forms and for the 1-forms :
Vo€ H'(R-), Dy_y, ppalc dz,) = h* | 0,,0 + ||3xnf+04||

h
(@7, fr(@n)a | @) + 50s, f+(0) a(0)* .
On 0-forms, we get

V8 € AHy g, Dy_y, on(B) > (C72 = hC) |8
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and deduce that there exist ¢; > 0 and hy > 0 such that, for all h € (0, ho|,

DT,(0)
Ag,_f+/27h 2 ClId .

On 1-forms, there are two subcases :

(al) Subcase 9,, f(0) >0 :
The inequality,

Va € H&T, Dy ¢, o0 dy) > (C™2 — hO) HaH2 ,
implies the existence of hg > 0 such that

APPO) L > eild, Yh € (0, h] .

(a2) Subcase 0Oy, f1(0) <0 :

1f APP0) (a dz,) = Mo da, , with A, < ¢y, Proposition 3.9 implies

d*_er/z’h(Oé dl‘n) - 0 5
which means
afz,) = C e f+)/2h

The 1-form e~ f+@n)/2h gr. belongs to Ker (A?Ji’(/l%h) :

(b) The case n > 1.
First note that any w € APHj (R™) is a sum

w= Z ar(z)de'" A dz, + Z By(x)dz"” = a A dx, + 0,
#I=p—1 #J=p
with a7, 3; € HY(R™), B;(2/,0) = 0, while de'! = dwi, A -+ N dxg#l,
I:{Zl < ... <i#[} C {1,...,”—1}.
If in addition w € AP H*(R"), the condition td*w = 0 reads 9,,a(z’,0) = 0
(for the metric ¢ ). Hence the variables (z/, z,,) can be separated and Dy 7.5 (w)
equals

/}Rn_1 [ Z D", pplar(a’.) do,) + Z sz+/2’h(ﬂj($,,.)):| d\(z)

#I=p—1 #J=p

0
4 [ D paalem) + Dy o (Bszn)) dan
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where we used the notations D}f /2h for the quadratic form of the Witten
Laplacian on R*~! and D" fo2h for the quadratic form of the 1-dimensional

Witten Laplacian on R_ with boundary conditions. The measure dA(z')
simply equals (det G(2'))"/? da'.
Again there are two subcases.

(b1) Subcase 0., f+(0) >0 :
The analysis of the one dimensional problem implies

D"y janlar(@, ) dzy) > e llar(2/, )|
and

D", jon(Ba(a’, ) = e ||Bs(a, )]

Hence we get
Vw € N Hyp, Dypn(w) > e flw]”

and there exists ¢; > 0 such that
A?’:’(p) > cId, Vpe{0,...,n} .

(b2) Subcase 0, f(0) <0
Then there exists ¢; > 0 such that

Do) > [ 30 D palena') dey) )

#I=p—1
+ /OOD}/Zh(oz(.,xn)) dan +c1 |87 . (3.17)
If w is a p-form with p # pg + 1, the lower bound
D} jan(e) > Cp'hlaf?
which was given in Proposition 3.7, yields :
Dy pn(w) = C7'h |lw]|”

while the equality Djsp(w) = 0 implies that p = py + 1 and that
w=cYt A (e )2 dy ) | where 1, belongs to the kernel of the (n —1)-
dimensional Witten Laplacian associated with the metric

~1
Z (2, 0)dz;dx; .
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We have now all the ingredients to check every statement for a general met-

ric g. We focus on the subcase 0,, f1(0) < 0, which covers all possibilities.
Statements i) and iv)

Statement i) is a consequence of iv) together with Persson’s Lemma. It is
sufficient to check that, for all R > 0, there exists cg > 0, such that, for all
w € APHj(R™) supported in {min(|z'|, |z,|) > R}, one has

The inequalities (3.16) and (3.17), together with the estimate
D ppplar(,za)) = g llaC @)l if suppw C {|2'] > R},

provided by Proposition 3.7-iii), yield the result.
Statements ii) and iii)
If p # po + 1 the inequalities (3.16), (3.17) and the inequality,

D} ppn(alsz) 2 O lal )|
imply
Dy, sn(w) 2 coh||w]®

and

ATPP > goh1d

By Proposition 3.9, the only possibility, for A, € [0, coh) , to be an eigenvalue
of A?;’(p ot g An = 0. When g = g the corresponding spectral subspace is

one dimensional and equals Cip,, A (e=/+(@)/2h dx, ). For a general metric

g, the equation A;%p“l)w =0, |lw|| = 1, which implies Dy f5(w) = 0, and

the inequality (3.16) leads to
C2hS/° H)Zl(h_Q/sxn)wHQ > Dy (1 (h™2Px,)w) + H)Zg(h_2/5xn)wH2 :
Without the last term, Lemma 2.8 implies
dist 12 (X(h™ %5z, )w, Cipyy A (e @20 g )y < CRVIO
The upper bound of the last term,
H>~<2(h—2/5xn)wH2 < Ch8/5 7
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implies
dist 12 (w, Chpy A (@2 dz,)) = O(RYY)

It remains to check that Ker ADT (P01 is not reduced to {0}. The state-

ments of Lemma 3.11 and Lemma 3.12 are symmetric with respect to the
choice of the metric. Hence the reverse inequality of (3.16) (with exchange
of g and @),

Dy pn(w) > CDy (1 (5 w,)w) — CH || 50 (o, )|
+ O R (BP0, (3.18)

also holds for any w € AH{ ,(R™). We apply it with w = iy, A(e™/+@)/2h dg;,))
and this leads to
Dy (R ,)") < O

DT ,(po+1)

The Min-Max principle then says that A admits an eigenvalue smaller

than ChS/® . It has to be 0 due to the prev1ous supersymmetric argument. N

3.4 Reduction to the local half-space problem.

We end here the proof of Theorem 3.3 by introducing, after a partition of
unity, the right coordinates which permit the comparison with the model
half-space problem.

Proof of Theorem 3.3.
Let {Ux, 1 < k < K} denote the union of the critical points of f and f}Q.

Consider a partition of unity Z,i\;l X2 = 1 such that the C°(Q) function yy,
identically equals 1 in a neighborhood of U, when 1 < k£ < K. The refinement
of this partition of unity will be specified later by the local construction of
adapted coordinates.
We recall that the operator A?[ is the Friedrichs extension associated with
the quadratic form :

2
Dy, pn(w) = ||df7thAL27g f%wHAng ,

on AHj (). The standard IMS localization formula ([CFKS]) gives
Dy, pn(w ZDgfh Xiew) = W2 IV x| w3 12,
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for any w € D(AP}) and by density for any w € AH; .
If supp x, does not meet the boundary, the term D, ;,(xrw) behaves
like in the boundaryless case :

o If £ > K, then we have

_ 2
Dy ralxaw) > C lwllizz, -

o If k< K,we APHjj; and Uy is a critical point of f with index py, # p,
then Dg,ﬁh(ka) > C~th.

e If k < K, w € APHjp and Uy is a critical point of f with index
pr = p, then there exists a fixed 1-dimensional space F,ﬁ” ) determined

by Hess f(Uy) such that,

Dy pn(xaw) < OB ||wlp ey

implies
dist (ka,F,fp)) < ChM10 ||WHAPL2,g :

Again like in the proof of Proposition 3.13-iii), this last statement refers
to Lemma 2.8 at the level of quadratic forms.

Consider now the case when supp x;, N 9Q # 0, with the support of
centered around a point Uy € 9§2. There are two subcases :

1) (32)(Uo) < [V £(Up)].
Then the cut-off x; is chosen so that, in a neighborhood V of supp xx ,

Vo € VN oY, (g—i)(x) <(1=0)IVf(x) ,

with 6 > 0. Locally it is possible to construct a function f such that
o f = ’Vf‘ in VN o and )Vf‘ = |Vf] in V. By setting @ = yxw, the
Green formula (2.15) and the inequality D, ¢, (@) > 0 imply

h/m@ | azsc (g—;’;) (0) do < (1 — 5)h/m<@|@>mm (g—f;) (0) do

< (1) [ d@ | 3 2 + B2 A" o2 + IV f1 @302 + Cib D]l 50 2] -
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With (2.15), we obtain

. ) 2 _ 2
Dy rr(xxw) =Dy pn(@) > 3 NV fl@lgpre = O Ixawllinge -

2) 0nf(Uo) = [V f(U)]-

Then Uy € 092 is a critical point of f‘aﬂ with 0, f > 0. Around Uy, we now
introduce adapted local coordinates. Due to the condition 0, f(Uy) # 0, the
eikonal equation :

10,@* + |V2|* = |VO|* = |V f]” (3.19)

with the boundary condition

(I)}E?Q,Uo - f}c’?Q,Uo ’ (3.20)
admits a second local solution which satisfies
0P| so.vy = ~On /] o (3.21)
Like in [HelSj4], we set
fr=0—f and fo=o+f.
We have the relations
1 1 1 1
= i of, b=<fit-f 22
Vf.-Vf_.=0, (3.23)
f"“aQ,Uo =0, _a"f"‘}aQ,Uo - 2a"f‘8Q,Uo 70, (3.24)
and f“@Q,UO - 2f‘8Q,Uo ’ a”f_‘afl,Uo =0. (3.25)
Let (z1,...,2,-1) = 2’ denote a set of coordinates on 02 in a neighborhood

of Uy and such that z;(Uy) = 0. We extend them in a neighborhood of Uy,
in O as constant along the integral curve of the vector field Vf. Then we
take @, = —3 f1 () for the last coordinate. In these coordinates the function
f and the metric g have the form

n—1
f(@) =z, + %f_(x’) and g = gun(2) dal+ Y gyj(x) dwda; . (3.26)

i,j=1
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The boundary 0f2 is locally defined by {z,, = 0} and 2 corresponds to {z, < 0}.
In order to apply Proposition 3.13, it remains to check that the function f can
be extended to R”, so that it satisfies Assumption 3.8 when Uy is a critical
point f ‘ 0q- Indeed the additional assumption does not depend on the metric
g and we can assume that the g;; are constant in the coordinates (2, z,,). It
suffices to choose, in a small enough neighborhood of Uy = (0,...,0), Morse

coordinates (x1,...,z,) for f- in the metric ), ;_ gi;dx;dz;

n—1
fz) =z, + Z)ws? .
j=1

Then this function is extended to R™ by :
~ 1— X(.T,) n—1
2
fl@) = a0 + [X(x') + T] PRV
j=1

for some cut-off function x supported in a neighborhood of 2’ = 0.
With this choice of coordinates, the quantity D, ¢ (xxw) take the form dis-
cussed in Proposition 3.13.

We can now discuss the lower bound of Dy s (xxw), depending on the
localization by the cut-off xi, such that supp x N 9Q # 0.

o If £ > K, we are in case 1) and
Dy sn(w) = O [ xawlly g2, -

o If £ < K, the origin of the coordinate system is Uy = U. If w €
APHj  and Uy, is not a critical point of f}aﬂ with index p, = p—1 and
(9nf(Uk) > 0, then Dg,f,h(ka) > C1h.

e If k<K we APH&T and Uy is a critical point of f}m with index
pr = p— 1 and 0,f(Uy) > 0, then according to Proposition 3.13-iii)
there exists a fixed 1-dimensional space F, k(p ) such that the inequality,

Dy.rn(xrw) < CTHP || xaw |2,

implies :
dist (xrw, ") < C RO lwllprz2g -
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The partition of unity is chosen so that the previous choice of coordinates is
possible in a neighborhood of any x, and the set of metrics
g = Gun(x)dz,? + Z” <n Gijdr;dz; in the local coordinate systems form a
IC-set according to Definition 3.10. Hence, the constant C' can be chosen
uniformly. We now introduce the set A, of indices k, 1 < k < K, such that

e cither Uy is a critical point of f with index p,
e or U, is a critical point of f}m with index p— 1 such that 9, f(Uy) > 0.

For w € APHjj () with [[w][ypz2, = 1, we get

(Dg,f,h(w) < C_1h6/5) = | dist ( Z F(p < Cp/10
keAp

Hence the dimension of the spectral subspace,

F® = Ranl 5 (A7 ?) € Ranljg o) (A7) |

is at most #A, =m, .
We next verify that dim F®) > #A4, = mg. According to the Min-Max
principle, it suffices to find an orthonormal set of p-forms w! € APH; (Q),
k € A, , such that

Dg,f,h(wh) = 0(h3/2) .

Indeed it is enough to take a truncated element of the kernel of the local
model for A T® around U, k € A,. We give the details for the case
U, € 09. By takmg the same cut- off X1.k> X2k » Xlk + sz = 1, and the
same coordinate system as above, we write on R™

Dy fon (@) = Dy gon(X140) + O Ix2uwl® = CR* > ([ Vx| w]®
i=1,2

where g, and fj are defined on R” according to the previous construction and
coincide with g and f in a neighborhood of supp xx . According to Proposi-
tion 3.13, there exists 7 € APHj »(R”) in the domain of the associated Wit-

ten Laplacian, such that D,, s, »(nl) = 0. By taking w} = HXl,k nQH_l Xk Y
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we obtain the existence of hy > 0, C’ and C” such that :

skl < cn ]
and

In I
Dy n(wh) < O'h?—1EL_ < 0"p? |

v nt]” ~

for h € (0, hy . |

4 Accurate WKB analysis near the boundary
for Ag},)l.

4.1 Preliminary discussion

We work here under Assumption 3.1 while Assumption 3.8 will be satisfied
for the local half-space model.

We have seen in the previous section that, for p > 1, some quasimodes of
A?f(l”) being near the spectral subspace in 1[07h 3 ( A?f’(p)) are localized near
the boundary 0€2 and more precisely near critical points of f } g With index
p—1 such that 0, f > 0. In the boundaryless case, the WKB-analysis done in
[HelSj4] says that the small eigenvalues are of order O(e~¢/") and provides
an accurate approximate basis of Ran1[07h3/2)(A§cf })L) :

In order to get a similar result, we need an accurate WKB analysis at the
boundary in the spirit of the Helffer-Sjostrand treatment of the tunneling
effect in [HelSj1] and [He2]. Here again the boundary condition and the fact
that we are working with systems for p > 0 adds some technical difficulties.
In an analytic framework, this could be attacked by studying the propagation
of analytic regularity for microhyperbolic boundary value problems. At the
boundary one has to consider first the tangential propagation of regularity
and then the propagation into the interior. Having in mind our initial mo-
tivation of analyzing the Witten Laplacian on 0-forms, we shall study this
problem with arguments as simple as possible and restrict our attention to
the case p = 1. Nevertheless, this “simple” presentation agrees with the
general principle.

For an accurate comparison between eigenvectors and WKB quasimodes near
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a local minimum U, of f‘ 00 With 0, f (Up) > 0, we introduce another self-

adjoint realization of AS}?L in a neighborhood €, , with mixed boundary
conditions : tangential Dirichlet boundary conditions on €y, , N 92 and
full Dirichlet boundary on 0, , \ 0.

4.2 Local WKB construction.

The next construction is done locally around a local minimum Uy of f } .
with 0, f(Up) > 0. The function ® is a local solution of the eikonal equation
IV®|* = |Vf|*, which satisfies (3.20) and (3.21). Local coordinates (2, z,,)
are introduced like in Subsection 3.4 after the identities (3.22)-(3.25) and
lead to

1 1
f@, z,) =z, + §f_ () and ®(2' ) = —x, + if_(x’) :
with
T, <0in Q and =z, =0 on JN,

and we normalize f so that f(Uy) = f(0) = f-(0) =0.

We first consider a local solution u§*® near the point z = 0 of

2 w [e.e]
er AP upt = O(h) | (4.1)
with u@* in the form
ud* = a(x, h)e_% , (4.2)

a(x, h) ~ Zaj(x)hj : (4.3)
J
and the condition at the boundary
on 052 , (4.4)
which leads to the condition
a(zx, h)‘ag =1. (4.5)

This construction of a, as a solution of (4.1) in €, (which can be first formal
and then realized by using a Borel summation) is standard (see for example
Chapter 2 (p. 11-12) in Dimassi-Sjostrand [DiSj]).
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In order to verify locally the boundary condition for our future u%**, we

substract e~ % and still obtain

et AP (g — e 8) = O(h™) . (4.6)
We now define the WKB solution uﬁ”kb by considering :
_r
u?kb = df uo = dfh( whkb — € h) . (47)

According to (4.4) and (4.7), the 1-form uP* = d;,u*® satisfies locally
the tangential condition tu = 0 on the boundary.
The local L? norm of u¥*" is of effective order h%y%l, if one has in mind the
relation

e%dﬁh [a(x, h)e_%} = a(df —d®) + hda
= 2ap(z) dx, + hb' (2, h),

where b(-, h) is a one-form admitting the expansion :

h) ~ > hFby(x)

and aq satisfies :
ao(O) =1.

On the other hand we have

ADu™ = AW dp g™ = dp AL u™ = O(h=)e ™7
in a neighborhood of 0.
Moreover, u*? satisfies up, to O(h*) e~

td} ,u = 0. The relation

i , the second boundary condition

pd™ = AR gt = O(h)e

gives indeed

:\\

dypuy kb‘/an = O(h%)e”

in the neighborhood of 0 in the boundary.
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4.3 Another local Dirichlet realization of AE},)]

Let Uy be a local minimum of f‘an with 0, f(Uy) > 0, let = (2/,x,) be
the local coordinate system defined above, and let z +— |z| be the euclidean
norm in these coordinates.

For p > 0, we consider the domain

Qo = {2 — )W<p?+1,2,<0},

which has the shape of a thin lens stuck on 92 with radius p and thickness
O(p?). Tts boundary is split into

T'p =000, N2 ={jz—(0,1)]>=p*+ 1,2, <0},
and
I'rp = aQU()’p N o) = {\x’\ < P, Ty = 0} .

On this domain, we introduce the functional space
N i (Quy ) = {u € N H (2 ); tuly, =0l =0}
The Friedrichs extension associated with the quadratic form :

y 2
AlHol;O,T(QUO,P) Sw Df,f,h(w) = f,hWH

is denoted by AD DT The domain of A P §s contained in AYH2(Qy,, p)

D DT(l))

for any 0 < p' < p. An element w € D(A} satisfies indeed :

D,D
Vn € AlHé;O,T ) <Afh Ty |n) = <df,hw | df,fﬂ?) <dfhw | dfhn> Dgfh(w n) .

By testing with 1 € C5°(Qu, ), this gives A w € A'L*(Qy, ,) and therefore
w admits a second trace on I'rp. By testing with any n € C55 () , we
get

Along I'rp, w solves an elliptic boundary value problem Af rw e AL
tw =0, td} ,w =0, which provides the H 2 regularity outside the edges.
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Remark 4.1. It is actually possible to characterize the domain, for p > 0
small enough, by :

DALY = {u e A'H* Q. p) | tul, =0, tdj,ul, =0,
and u‘FD =0.}

For this regularity result it suffices to consider the case f = 0 and h = 1.
The boundary conditions are written for u = uy dxy+- - -+ u, dx,, in the form

=0, fort=1,...,.n—1,
:O’

Wi ‘aQUO,p

=0 ) 8acnun

u”}rD ‘FTD

while the principal part of A% 1s a scalar Laplace operator, as can be seen
from the Weitzenbock formula. Hence componentwise and at the principal
symbol level, the most difficult case is a Dirichlet-Neumann problem for the
operator Y7, 0y,g"” 0y, according to (3.9) and (3.10). The theory of bound-
ary value problems on domains with conical singularities ([Kon/) and edges
([Gri], [Da]) provides the H?*-reqularity when p < pim, where pum, can be
computed explicitly (piim = 7/2 for this mized Dirichlet-Neumann problem).
Notice that we do not need this result and that the H?-reqularity away from
the edge is sufficient for our analysis.

We now prove the

Proposition 4.2.

For p > 0 small enough, there exist h, > 0 and C, > 0, such that the self-

D,DT,(1)

adjoint operator A} satisfies the following properties :

a) For h € (0, h,), the spectral projection 1[0’h3/2)(A?;LDT’(1)) has rank 1.

b) Any family of L*-normalized eigenvectors (u")neopn,) of AD DLW cch
that the corresponding eigenvalue E(h) is O(h), satisfies

Vo' < p,Va € N 3N, € N, 3C, » > 0 such that, Yz € Qu,
}80‘ h( ‘ < Cyph™e exp( @(w)) : (4.9)

c) There exists €, > 0 such that the first eigenvalue E;(h) of AD DT gqt-
1sfies
El(h) = €_Ep/h .
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d) If ul' denotes the eigenvector of ADD (@)

and normalized by the condition laznu?(()) = iy, ut’*(0), then

associated to eigenvalue Fy(h)

Vo' < p,Ya € N, YN €N, 3Cyo, > 0 such that, Vz € Qu,
x 4.10
92— ) ()] < Oy exp (~222) | (4.10)
Once this is proved one easily gets roug)h exponentially small upper
bounds for the m$ first eigenvalues of Afh € {0,1}) on Q, by con-
structing quasimodes suitably localized near each of the critical points.
Our final analysis provides the exact exponential scale with a complete ex-
pansion of the prefactor, and we do not develop this point here.

The next subsections are devoted to the proof of Proposition 4.2. We
now introduce some specific notations and preliminary results. Again with
the coordinate system (2',z,) with 2'(Uy) = 0, z,(Uy) = 0, and the nor-
malization f(0) = 0, the function f }QU ) is extended to R” according to
Lemma 3.11, so that Assumption 3.5 is satisfied with only one tangential
critical point at ’ = 0. The corresponding tangential Dirichlet realization

A?: O on A'L*(R™) has a 1-dimensional kernel and its second eigenvalue is

larger than C'~1h5/5,
An ingredient for the proof is a variant of the integration by part formula of
Lemma 2.2.

Lemma 4.3.

Let p > 0 and let ¢ be a real-valued Lipschitz function on Sy, ,. The relation

. 2 ) 2
derw H +h ‘ ‘
A2L2 AOL?2

+{(IVfI? = Vol + hlgy + hLG et w ]| efw)pye
—h/ (W | W) pieq 255 <af) (0) do (4.11)
T'rp 7 an

Re DY, (w, e?hw) = h? ‘

holds for any w € AN Hyop(Q,,p). Moreover, when w € D(A?ADT’(I)) , the
left-hand side equals Re (e? N W)

Proof.
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For w € A'HYy 7(Qu,,) , we have e?hw € A'H, 1(Qu,,,) . We compute

L
h

D, (w0, ¥Fw) = (g | dp(eF)) + (de | 45, (R )
= (dppw | erdpp(erw)) + (ehdspw | do A (e
+(d} pw | ehdfh(e£w)> <€hdfhw | iv,(e
= (dpalefw [ dyp(eiw)) — (dp A (eFw) [ dyn(e
+Hdga(efw) [ dp A (eFw)) = (do A (ehw) | dp A (eFw))
<df,h(6hw) | df,h(e% )) + <iv@(e%w) | dfp(erw

—(d}n(eFw) | ivp(eFw)) — (ive(eFw) | vy (e

We set @ = ehw € A Hgy1(Qu,,). The operator dpA is the adjoint of iy,
and the tensor relation
iv,(dp A1) = (ivedp) An— de A (iven) = Vel n — do A (iven)
leads to
L ~ o~ 2 ~ ~
Dgff,h(w7€2hw) = Dgff,h(waw) —(|Vel|"@ | ©)

—(dp N© | dyp@) + (dsp | do A @)

H(ivew | d} @) — (d} @ | ivew) -
After taking the real part, we obtain

» ~ o~ 2 ~ ~
Re Dg[fﬁh(w, e*hw) = Dgf,h(w,w) —{(|Vp|"@ | @) .

We conclude by applying Lemma 2.2. 1

4.4 Exponential decay of eigenvectors of AD DT(1)

The estimate, 9%u"(z) = O(h~Nee~"i"") , which is stated in Proposition 4.2-
b), will be proved in several steps. We will first consider H!-estimates and
deduce afterwards higher order estimates from elliptic regularity. Even for
H'-estimates we need two steps :

1) We prove the exponential decay along the boundary I'rp by applying
Lemma 4.3 with a function ¢ similar to %f_.

2) The exponential decay in the interior of Qy, , is then obtained with ¢
similar to ® once the boundary term is well controlled.
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Proof of a) and b) in Proposition 4.2.

Statement a)

Actually it is a simple comparison with the full half-space problem via Min-
Max principle as we did for Theorem 3.3. Any w € A"Hg, 1(Qu,,,) can indeed
be viewed as an element of A'Hj ,(R™) by setting w =0 on R™ \ Q, , .
Statement b)

Let u" € D(A?}LDT’(I)) satisfy

AN = E(hyu" |, BE(h) = O(h) ,

=1,

We will use the notation ,
h

e
h:ehu .

U
The integration by part formula (4.11) will be applied with ¢ = ", where
with " similar to % f— or ¢" similar to ®. We recall

f@ z,) =z, + %f_(x') and ®(2',x,) = —x, + %f_(x’) :

where 2’ = 0 is a local minimum for f_ with f_(0) = 0. Moreover we have
Vz,-Vf_(2') =0, so that :

1
VAP = Vel + VI

The proof which follows is somewhat reminiscent of [HelSj5], which was deal-
ing with Schrodinger operators with miniwells. We will first show the decay
along the boundary before we “propagate” the decay in the normal direction
inside §2.

Step 1 : Decay along I'rp .

We take

with ,
iy = {1 (') — Chlog =) i f (2') > Ch,
7= f(a)) = ChlogC',  if f_(z') <Ch,

where the constant C > 1 will be fixed later. We associate the sets
O = {z = (2 zn) € Quy,p; f-(2") <Ch}

and
Q) ={z=(2',2,) € Wy s f-(2') > Ch} .
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The condition E(h) = O(h), formula (4.11), and the equality |[V¢"| = 3|V f]
in Q" imply the existence of C; > 0 such that :

Cih ||a )2 |hdi || + (BT o pe + (I Vzal?a" | @) 01

h - 0y,
_h/FTD<uh‘uh>A1T;Q(aa;)(0') do

1 -
+ VP = VL — 40 Lgy (w)a" [a")

hll2
HAlL%Qﬁ

with C] determined by f and the upper bound of E(h).
For x € Q" one immediately gets from the definitions that

@ (z)| < exp% lu"(z)| a.e. .
We obtain, for a constant Cy(C') which may depend on the choice of C',
Co O > g + i oy
+ (Va2 a" | a") g1 2 — h/ (@" | ") a1 <aaf:) (o) do

T'rp

1
+ VP = VL] — 4Gk 1gy (2)i" [ @") + Crh(lgn (2)8" | ") .

For x € Q" | we write

Vo) = V) (1- ) |

f-(a)

and

Lo o o VAP (20h cow2 VI

Z — = - > .
Since there exists Cy > 0, which is determined by f_, such that

A C ]
> >
“ETEwm O

we get

1 C
Vo e, (V@) — V@) = Cih > (?4 - 01) h.
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We obtain for any C' > max(1,2C,Cy), the existence of 6(C') > 0 and
C3(C) > 0 such that :

Co(C)h > |[hdd|s s + B |,
+(1+ 20(C)R){|Vara 20" | 7)1

h - oz,
_h/I:TD<uh‘uh>A1T;Q < a:'En) (O') dO’,

with lime_, 1o 0(C) = +00. )
We now can use (4.11), with ¢ =0, f =z, , h = m, in order to
get, for all n € A Hj, (2, U, ,

(14 6h) " |hdn||3ape + (14 ) [hd Dl ro 2

oz, ~
+(1+5h)<|Vxn\277|77)—h/ (s < ) (o) do > =hC|[n|3i 2

Trp an

with § = §(C) and C independent of C'.
This leads, by choosing C' large enough and then hg > 0 small enough, to
the existence of a constant C5 > 0 such that, for all h € (0, hg],

1 N
Coh 2 G [ s -

Since " > % f- + Cgshlogh, we have proved the existence of Ny > 0 such
that : ;-
h‘ < O™ (4.12)

ezhy

AVH?
where 2/ = 0 is a local minimum for f_, with f_(0) = 0. Note that, since
f ‘ Tpp = % f—, this implies also, using the trace theorem,

Step 2 : Normal decay inside €2 .
We follow a similar approach by working with the normal coordinate x,, . We
take

eru < Cgh™No . (4.13)

h
}FTD AVHY/2(Dpp)

P(2) = 524 (en) + 5 (@)
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with
hoy_ f 2aa] = Chlog 22l e 2, | > Ch,
30+(33n) = .
2|z,| — ChlogC',  if2|z,| < Ch,

where the constant C' > 1 will be fixed later. We associate the sets

Q" = {2 = (2 2,) € Qo 5 2]wn| < Ch}
and
O = {z = (2, 2n) € iy ; 2Aanl > Ch} .

h
The formula (4.11) is used like in Step 1, with 4" = e u” and E(h) =
O(h). The difference comes from the fact that the boundary term is already
estimated with (4.13).

We have indeed, on the boundary x,, = 0, the inequality : e
From (4.11), (4.12), (4.13), and the inequality

<ern.

ol
h

B

F—(@)
|i"(2)] < e jul(x)], a.e in Q"

we get, for a C-dependent constant Cy(C'), the estimate

Co(C)*h~M > Cih||a )+ Cih

I 2
ehu
HY2(Trp; ALY T*Quy )

> |hdit" || + AT [0 + (IVF1? = [V ? = Ca) Ly ()" | @)

hl12
HA1L2(Q§

with C7 > 0 independent of C' > 1.
For z € Q" we have

and
\V/ .V > |V — — |V > .
IV £l ‘ ‘2 } > |V, 4‘ ‘P-i—} = ACs| 2|

We can assume |z,| < 1 in y, , and we take C' > 8C;C3. The conclusion
is simpler than in Step 1. By adding the estimated term Cyh(a"1gn (z) |a"),
we get

Cyh™2M0 > thathmm + th*ahHiom +Cih HahHAlL2 ’
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which gives the existence of C'5 and N; such that :

|

Step 3 : Elliptic regularity.

We now set @" = enu”. For p/ C p, we take a cut-off y € C>(Qy,,p) with
compact support in Q, , U 'rp and such that y = 1 on a neighborhood of
Qu,.- The form v" = yu" satisfies the boundary value problem

vh—Avh:r(})‘ in R" |
tvh =0 and td*v" = r! on{z, =0} ,

) = O(h'_Nl) and HT?HAOHI/Q(Rn—I) = O(h_Nl) *

< Csh™™ . (4.14)
AlHl(QUO 7p)

@
ehuh)

with HrgHAlLZ(RZ

This implies the existence of N; > 0 such that :
=0h M.

1o |2

We conclude by induction for any finite decreasing sequence (pg)o<k<x and
associated cut-offs yy, , with x; = 1in a neighborhood of €2y, ,, and supp xx C

{xk-1 =1}, |

4.5 Small eigenvalues are exponentially small.

We now check that the eigenvalue FEj(h) of A?,;LDT’(I) lying in [0, h%/2) is
actually of order O(e~#/"), for some €, > 0. We prove this by comparing
with the half-space problem, for which we know that the first eigenvalue is
0. The Min-Max principle or Lemma 2.8 are not sufficient here and we need
the full accuracy of the spectral theorem.

Proof of Proposition 4.2-c).
We assume that p > 0 is small enough, so that f admits an extension
f =z, + % f-(2') on R™ | which satisfies Assumption 3.8. So the Lapla-

cian A?:’(l) has a one dimension kernel and its second eigenvalue is larger

than ChS/®. With this function f, we associate the second solution of the
2 2

eikonal equation ‘VCD‘ = ‘V f ) , which has the expression :

() = —a, + = f ().

N | —
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Let " be a normalized eigenvector of A?,;LDT’(I) associated with the first

eigenvalue F;(h), which belongs to the interval (0, h%?]. Let y € C*(Qu,,)
be a cut-off function with compact support in €y, , U I'rp and such that
x = 1 in a neighborhood of 0. The form v"* = yu" belongs to A1 H%(R") and
satisfies

f.h
h

(A% — Ey(h)o" = —R2[A,\Jut , in RT,
toh =0, td}’hvh =iy, u”, on {z, =0} .

The functions 7§ = —h?*[A, xJu" and r? = iy, u" vanish in a neighborhood V;

of z = 0. Due to the exponential decay of u” stated in Proposition 4.2-b),
there exist C' and Ny, such that they also satisfy

h

|ri(z)| < ChNoe™

Due to the trace theorem, it is possible to find 8" € A'H?(R™), such that

~ ~ ),
t" =0 and td*0" = et 1vxuh ,
with, using the property é‘{x oy = f‘{x oy
ler] . son .
ALH?

Moreover by possibly taking a smaller neighborhood Vi, the forms 6 and 9
can be chosen so that suppf NV, =suppd NV, =0.
For any given neighborhood of 0, V, C V; there exist ¢q, ¢y > 0 such that

Ve e R\ Vy,  (Jzn]| <) = <f(x) > 02> .

With a cut-off x; € C5°(] — 1,1[), x1 = 1 in a neighborhood of 0, the 1-form
0" = xu (%) e 01 satisfies

0" =0, td:, 0" =igu" =, with [[0"],,. = O "). (415)

1

Hence the form w" = v" — " belongs to the domain of A?T’( ) and solves

N

0 = Ex(h)w" =},
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with HwhHAILQ = 1+ O(e=/") and ||r?|| 12 = O(e~®/"). The spectral

theorem then implies that there exists an eigenvalue \(h) of A;l; such that

|B1(h) = A(h)| = O(e™/") .
The inclusion, U(A%L) \ {0} C [ChS/> +00) , with Ey(h) = O(h*?), implies
ARh)=0. I

4.6 Accurate comparison with the WKB solution.

We now compare the eigenvector associated with an exponentially small
eigenvalue with its WKB approximation. We adapt the method presented
in [He2, HelSj2] by following the same strategy as in Subsection 4.4. The
H'-estimates are done in two steps with ¢" similar to 1 f_ and then with "
similar to ® . Finally the elliptic regularity is used for the C*°-estimates.

Proof of Proposition 4.2-d).
Let uh € D(A?;lDT’(l)) be an eigenvector associated with the first eigenvalue
Eqy(h) of ATPTW

APPTOUE = By ([t =1

According to Proposition 4.2-c), we know that F;(h) = O(e~ ), with g, > 0,

while the second eigenvalue of D?’,’lDT’(l) is larger than h3/2.

By taking p > 0 small enough, the WKB approximation u%** presented in

Subsection 4.2 satisfies

A}lzlutl”kb = (’)(h“ﬁe‘y in Quy.p
wkb —

tuf }FTD =0, "

td?hui”kb}rm =O(h®)e " ,

and there exists a ¢ > 0, such that for any p’ > 0, we have

H“?kaAlm(QUOW,) ~ e
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The cut-off function x € C*(Qy,,,) is supported in Qy, 2 Ul'rp and satisfies
x =1on Qp, s, with 0 < p’ < p/2. Later, we will take p’ > 0 small enough,
so that x can be taken in the form

X&', xn) = Xl(x,)Xn(xn) .

By Lemma 2.8, the real constant factor ¢(h) in the truncated WKB approx-
imation v¥** = ¢(h)xu¥*® can be chosen so that

wkb

HU _ulHAlHl :O(hoo)

and, due to the exponential decay of u? and u¥*®

HX(UII1 - C(h) ka HAlHl - O(hoo) :

We set
wh =l = by

The 1-form w" satisfies in Q, ,

(AY) = Ey(h))wt = x(2)(AY) — Ey(h))(ul — c(h)uy™)
AW \(uh — e(R)urtt) (4.16)

~h _<1>(£

=rpe h —|-7=0’

where 7' and r satisfy, according to Proposition 4.2-b),

P(x)

i =0O(h>), suppre CsuppVyx and 75 =0OhN)e

The last estimate can be done for any C*-norm, with ko € N.
On the boundary 0y, , = I'rp UT'p, we have similarly

h _ h —
tw }FTD—O, w }FD—O,
and et =) e T

with

i =O(h™), suppr? CsuppVxNIrp and 7l = (’)(h_NO)e_fgf)

With the different of choices for " given below, we will use the notation

h ELI
w'=ehrw".
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The 1-forms w and @ belong to A'H?*(Qy, ,) and their supports do not meet
I'p. Hence the integration by part formula (2.12) can be use in addition to
(4.11).

Step 1 : Comparison along ['7p.

Like in the proof of Proposition 4.2-b) presented in Subsection 4.4, we intro-
duce the sets

O ={z=(2,2,) € Wyp; [-(2') <Ch},
and QY ={z = (2/,2,) € Qi fo(a') > Ch} .
For any N € N, we take

1
= 530%/,— (x,> )

_(2/) =min {¢" (2') + Nhlogh™" ,¢(2)} |

P () = fo(a') — Chlog =0 if £ (2') > Ch,
v- f(a)) — ChlogC,  if f_(2/) < Ch,
and  (z') = min {¢" (') + (1 = €)[f-(a) = f-(¥)], ¥ € supp V1 } .
We recall that the cut-off x writes x(2, z,) = x1(2")xn(xn). The constant

C' > 1 will be fixed at the end like in the proof of Proposition 4.2-b). The
constants p’ € (0, p/2) and € > 0 are chosen so that, for h € (0,hy, ),

¥

=z ==

with ¢

ol _(2) =" (2) + Nhlogh™' in Qup .

Note the inequalities

1
Oh(r) < §f_(x) + Nhlogh™ in Qp,,
1
o) < §f—($) < ®(z), if 2’ €suppVxi,

1
and () < 5f-(2) + Nhlogh ' < @), if a, € supp x;, .

In particular, we have for h € (0, hy )
oh(z) < ®(z) , for x € supp V,
which implies

h

N
eh oy

+
AL2

= On(h™M0) |

A°L2(Trp)

PN
e,
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We apply the integration by part formula (4.11), where the left-hand side is
h

: : . ek
computed with (2.12), and we obtain for the form w" = e w" :
h h
- eN (@) ~ - en (@) -
Fo4e hord wh’ + ||t +e oy HwhHAlLZ(F )
AlL2 TD
INVE AOL2(Tpp)

> [hdi|[pe + | o,

b~ Oxy
<wh ‘ wh>A1T;Q <%) (U) dU

1 -
+ (VPP = [V [ = 4Ch)1gy (x)a" | @) |

+<|Vxn‘2@h | ’LZJh>A1L2 — h/

T'rp

where the constant C; > 0 is determined by f and 7 = O(h™) for £ = 1,2,

R ()

In Q" the weight e »  is bounded by Co(C)h~" and this provides

| @ ) S Co(CYR™ ||lw , < Gs(C,N)

a2 an a2 an
hHAlHl = O(hoo)

Hence we can add to both sides of the previous inequality the term Ch Ht’[}

due to Hw

2
hHA1L2(Q’1) )
which is controlled in the left-hand side by a (C, N)-dependent constant. We

obtain

C3(C, MY [ oo+ 1) 2 ([ [[Ga o + ([

oz,
|V, 20" | 9" a2 — h (" | 0" pira ( ai ) (0) do

T'rp

1 “h o~ “h| o~
+ (VP = [Vl [P = ACh) Loy ()" | 6") + Crh(lgn (z)@" | @") .

In ijr, the point z fulfills almost surely one of the two possibilities :
e Either Vi = V¢, and we get

2e — &2
4

where the last lower bound is due to the fact that pn_(z) = ¥(x)

cannot occur in a neighborhood of 2’ = 0 for € > 0 small enough and
h e (0, hN,p/,e)S

JIVEE = Ve [ 2 EE 1 E @) 2 6. > 0,
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e or Vol =Vf (1- %) , and we get like in the proof of Proposi-
tion 4.2-b)

1 2 ho 12 C
- _ >__h.
VI~ (96 ) 2 o

Taking C' > max(1,2C,Cy) and h € (0, hy p.| , with hy e > 0 small enough,
leads to

Cs(C, NY(h=™ || +1) > ||ndd"|[, . + ||hd "0,

o[-
|V, 20" | 0" g1 2
ox
- " " 1 n
h/FTD(w @ >ATUQ<an) (0) do

+26(C) h||w

hll2

e -
After treating the right-hand side like in the proof of Proposition 4.2-b)-
Step 1, we obtain, for a possibly larger N,

HwhHAlHl(QUO,p) < Cyh™Mo

Our choice of (g, p') imply

Vo € Quy s P > f(x) + Nhlogh™ — C’log% .

We have proved the existence of Ny and pj, such that, for any N € N and
p' € (0, pp, there exists hy , > 0 and Cy,, > 0, such that

|

holds for any h € (0, hy ). This last estimate and ¢‘FTD = f}FTD =3/ }FTD
imply

f—

e (ul = elh)uy™)| < Oy WV

AVH (R, 1)

L whb ‘ _ o
h —c(h =O(h™).
et = ctmat™)[ e oy = OO
Step 2 : Comparison in the normal direction.
After replacing p’ by p, Step 1 provides the estimate
i w o0
ef (u — c(h)u kb)) = O (4.17)
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We work in €y, , with the above estimate and p’ € (0, p/2) will be taken
again small enough.

In order to get the interior estimate with the weight e%, we modify the
previous analysis like in the proof of Proposition 4.2-b). The sets Q% are
now given by

Q" ={z=(2,2,) € Wyp; 2ln] < Ch}
and Q" ={z= (2, 2,) € Qp,p; 2lza| > Ch} .
The function ©%, N € N, is given by
¢ (z) = min {p"(z +Nh10gh (@)}
with  '"(z) = %goJr(xn) + —f_ ('),
i { Jof ok ezmtzcn
n g if 2|z, | < Ch,
and  (x) = min {¢"(y) + (1 - e)day(,y), y € supp Vx} .

We recall that the Agmon distance da,(x,y) is the distance between z and
y for the metric |V f|*dz? and ®(z) = da4(z, Up)).
Again, the constant C' > 1 will be fixed in the end like in the proof of
Proposition 4.2-b), while the constants p’ € (0, p/2) and £ > 0 are chosen so
that

O (x) = p"(z) + Nhlogh ' in Qu, -

Now we have the inequalities

(z) + Nhlogh™" in Q,,

<®
and  h(r) < ®(x) in supp Vy.
Hence the estimate,

h
PN h
e h (5]

= O(h_NO> ’

AOL2(Trp)

+
Al1L2

@Tro

is still valid.
The inequality (4.17) implies that the L?-norm of the trace of @w" on I'rp is
O(h*) and provides

fo

1
e2n W —

ALLZ(QP) T 2

h

< C5(C)h~ N‘

C5(C, N) .

HwhHA1L2 Qh)
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With these estimates, the integration by part formula (4.11) and (2.12) lead
to

Co(C, N)( [ oo 1) 2 ([ [ + [l

~ ~ ~hll12
(VP = IV [? = Crh)1gn ()" [ @") + Cuh || 0" ||, o gn -

Finally, for almost all x € €y, , we have :
either : V& (z) = Vi (z)
and
VIP = [Vek[* = (2e = &) [VF(@) 2 6,. >0
or : Vi (z) = Vo' (2)
and we get like in the proof of Proposition 4.2-b)

Ch
4‘xn‘ .

1
VIP = [V 2 1= [V 2

By assuming |z,|] < 1 and by taking C' > max(8C1, 1), we get that,
h
e wh|| = O(h=™o) | for some Ny > 0.

Like in Step 1, this leads to

e (uf = clhyu™)|

= 0(h™),

ANHY Q)
for p' € (0, p/2) small enough.

Step 3 :

The estimates in higher order Sobolev spaces is done like in the proof of
Proposition 4.2-b) by a bootstrap argument after writing a boundary value
problem for x(u? — c(h)u¥*) in R™. ]
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5 Saddle sets and main assumptions

5.1 Preliminaries

Here we adapt to the case with boundary the method of selecting the proper
critical points with index 1 that we used in [HKN]. Some definitions and
intermediate quantities have to be modified in order to take into account
the effect of the boundary. We recall that the intuition for getting the good
labelling of local minima, which is useful even to state properly the assump-
tions and results, comes from the probabilistic approach. The local minima
have to be labelled according to the decreasing order of exit times. We refer
to [BoGayKl], [BEGK] and [FrWe]| for details.

The existence of such a labelling is an assumption which is generically
satisfied. After this, it is possible to construct accurately quasimodes lead-
ing, with the help of the Witten complex structure, to accurate asymptotic
expansions of the low lying eigenvalues.

5.2 Saddle sets.

We recall that we work here on a compact connected oriented Riemannian
manifold Q = Q U 90 with boundary and that the function f satisfies As-
sumption 3.1. According to our preliminary results on the Witten Laplacian
A?f in Theorem 3.3, we introduce the following definition of generalized
critical points with index 1.

Definition 5.1.
A point U € Q will be called a generalized critical point of f with index 1 if :

o cither U € Q2 and U is a critical point of f with index 1,

e or U € 9Q and U is a local minimum of f}m , such that 0, f(U) > 0

(n being the outgoing normal vector).

The set of generalized critical points with index 1 is denoted by U™ .
Meanwhile 4/ denotes the set of local minima of f} o+ From now we will
use the notation

mp:#u(P), forp=0,1, (5.1)

instead of m?.
Finally it is convenient to call ¢« the union of all critical points of f and f ‘ 00"
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The saddle set (or set of saddle points) will be defined in the same spirit
as in [HKN] and chosen in V). We need some notations.

Definition 5.2.

a) For any E C Q, the set of connected components® of E is denoted by
Conn(E) .

b) For any A, B C Q, H(A, B) denotes the quantity

H(A,B) =inf{c€ (—o0,+0), 3C € Conn (f~((—o0,])),
CNA#0and CNB#0} .

This quantity H (A, B) is the least height to be reached to go from A to
B. A simple result which was checked in [HKN] in a slightly more general
framework is the

(5.2)

Proposition 5.3. B
When A and B are closed nonempty subsets of ), H(A, B) is a minimum :

3C € Conn (f~'((—o0,H(A,B)])) , CNA#Q and CNB#0 .
We are now able to introduce the right notion of saddle set.

Definition 5.4.

Under Assumption 3.1, let A and B be two closed subsets of Q. We say that
7 C Qs a saddle set for (A, B) , if it is not empty and satisfies the following
conditions :

(spl) Zc UMY nfY{H(A B)Y))
(sp2) {C € Conn (f'((—oo, H(A, B\ Z), CNA£D,CAB#0}=0.

If we compare this definition to the definition of “strict” saddle set in
[HKN], we note that we have dropped the conditions

ZNA=0 and ZNB=10.

We will effectively use the notion with 92 C B and so the saddle set can
meet B .

In order to check that this definition is coherent, it is useful to recall a few
remarks coming from the local analysis of a Morse function which satisfies
Assumption 3.1.

2We remind that the connected components are non empty closed subsets relatively to
the induced topology on E and therefore, €2 being assumed compact, they are compact if
E is a closed subset of .
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Local structure of the level sets of a Morse function
In order to analyze the local situation near a point xq of €2, let us introduce :

Af(20) == {z € Q; f(x) < f(20)} N By,
where B, is a ball centered at xy. Similarly, we can introduce
A5 (ao) = {2 €T3 f(x) < f(20)} N Bay -

Interior points :
First we observe that, near a non critical point z¢ € €2 of f, one can find B,,
and a set of local coordinates such that

A?(l’o) = {yl < 0} N on .

Secondly, if xy is a critical point of index p, then there exists a ball B,,
around xy and a set of local coordinates centered at xy such that

P n
A<x0 { Zy Zy3<0}ﬂBwo,
=1 t=p+1

and )
AF () = {—Zy?”r Y < 0} N By, -

We now observe that

1. When p = 0 (local minimum), A7 (o) is empty and A? (zo) is reduced
to {Jfo} .

2. Whenp=1, A]f (o) has two connected components and zy belongs to
the closure of each of the two components. This property is crucial in
the discussion of (sp2).

3. When p > 2, A% (x0) is (arcwise) connected.

Points on the boundary :

If o belongs to 0f2, Assumption 3.1 leads to two cases :

First case.

If 7o is not a critical point of f]| oo then the hypersurfaces {f = f(z¢)} and
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0f) intersect transversally in a neighborhood of xy. Hence there is a ball B,
around xy and a set of local coordinates such that

A7 (20) = {11 < 0,9, <0} N By, ,

and
A5 (o) = {11 < 0,4, <0} N By, ,

with QN By, = {y, <0} N By, .

Second case.

If xy is a critical point of f‘m with index p — 1 and with +0, f(z¢) > 0,
there are local coordinates (y1,. .., Yn_1,Yn), constructed from the relations
(3.22)~(3.25), such that (y1,...,y,—1) are Morse coordinates for f|,, and
such that

p—1 n—1
AF (o) = {:l:yn—ny—l—ny <0, yn go} N By, ,

i=1 i=p
and
p—1 n—1
AF (x0) = {iyn =Y U +) <0,y < 0} N By, -
i=1 i=p

These local models permit to see that

1. If 2 is a local minimum of f‘an such that 0,f(zg) < 0, then
A5 (20) = 0 and AT (20) = {xo} .

2. If zy is a local minimum of f‘an such that 0,f(zg) > 0, then
A5 (29) N OQ = ) and A?(mo) N = {xo}.

3. In all other cases, A} (7o) admits one or two connected components
with a non empty intersection with 9 (two components if p = 2 and
Onf(x9) < 0 and one in all other cases).

Proposition 5.5.
If A and By are disjoint non empty subsets of the set of the local minima of
f in Q, then the pair (A, B), with B = B; UJ), admits a saddle set.

Proof.
We have to prove that a set C', belonging to Conn ( f~!((—oc0, H(A, B)]) )
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and satisfying C N A # (), C' N B # () contains an element z € UV such that
f(z) = H(A, B) . Then it suffices to take Z = UM N f~1((—o0, H(A, B)]).
Let C be a compact connected component of f~1((—oo, H(A, B)]) in Q. Since
f is a Morse function, there are two possibilities, resulting from the previous
local analysis of f and of the connectedness of C' :

e Either it is reduced to one point which is a local minimum of f in €2,

e or it is the closure of a finite union of bounded connected components
Q; of f71((—o00, H(A, B))). Note that the €, are open subsets of ).

The first case cannot occur. Indeed C N A # () and C' N B # () would imply
that the point z¢ (such that C' = {z¢}) is a local minimum (z¢ € A C Q)
and belongs to 092 (xc € B\ By C 09).

Hence, we are in the second case and we have

C=uU,Q;,

where €y, ..., Qy are bounded connected components of f~! ((—oo, H(A, B))).
Every z € ANC (resp. x € BN C) belongs to some ;. The §2; are labelled
such that, for alli € {1,..., M}, ANQ; # 0, and foralli € {M +1,..., N},
ANQ, =0. We have

M N
=1 i=M+1

There are several cases :

If C c UM, Q;, then CN B, =0 and C N B # () imply that there exist
i € {1,...,M} and 2y € Q such that 2y € Q; N 9Q. This implies first
f(x0) = H(A, B) and the local description of A7 () implies z, € UL Non.
If C ¢ UM Q;, then CNUY,,., Q; # 0. Since C is connected, we have

N
1Qi) : (j:J\L/JI—HQj) 70

Therefore, there exist i < M and j > M + 1 such that C'n uNQ; #0.
Assume zp € C'NEY,;NEQ; and note that ¢ # j implies f(zo) = H(A, B). The
local description of A? (x0) says that xy € 02 is possible only if it is a critical

Cn(

I'Ce

2

point of f| oo With index 1. But again this cannot occur because ;N AF (2)
would contain a point z; € 9. Hence xg € €. The local description of
A? (z0) shows that x, has to belong to U™ . 1
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On the uniqueness of the saddle set

Like in the boundaryless case studied in [HKN], it is not possible to give a
satisfactory definition of a unique saddle set and we introduce a new definition
which explicitly specifies this case.

Definition 5.6.
Let A, B be closed nonempty disjoint subsets of Q. The point z € UM is said
to be a unique (one point)-saddle set® for the pair (A, B) if

(.0 C)nuYnf(HAB)| ={},

CEC(A,B)

where C(A, B) denotes the set of closed connected sets C C f~1((—oo, H(A, B)]),
such that CNA#Q and CNB £ 1.

5.3 Main assumption, notations and first consequences.

We now give the main assumption like in [HKN] and inspired by [BEGK],
which ensures that each exponentially small eigenvalue of A;?,)l is simple, with
a different asymptotic behavior.
We set here

Co = 092 .

Assumption 5.7.
Under Assumption 3.1, there exists a labelling of the set of the local minima

of f U = {Ufo), e Uﬁ?g} such that, by setting

Cp = {U,E”,...,Uf“’} UG,
we have :
i) Forallke {1,...,mp}, U}go) is the unique minimizer of
H(U,C\{U}) = f(U), U€eC\Co.

ii) For all k € {1,...,mo}, the pair ({U,EO)},Ck_1> admits a unique (one
point)-saddle set {z}} .

3or more shortly, a unique saddle point,
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Remark 5.8.

Like in [HKN], it is possible to check that this hypothesis is generically sat-
isfied. More precisely, it is satisfied if all the critical values of f are distinct
and all the quantities f(UM) — F(U®), with UY € UY and U € U are
distinct. We refer the reader to [HKN].

By its definition, the point zj is a generalized critical point with index 1,
zi eV,

Definition 5.9. (The map j)

If the generalized critical points of index 1 are numbered U;l), g=1,...,mq,
we define the application k — j(k) on {1,...,mg} by :

Ul =2 (5.3)

Definition 5.10.
Under Assumption 5.7 and for k € {1,...,mg}, we denote by Ej. the con-
nected component of U}go) m

F7H (=00, FUSONNAUG) Y -

Proposition 5.11.
Under Assumption 5.7, the following properties are satisfied :

a) The sequence <f(U]((1,z)) — f(U/,EO))>kE{1 } is strictly decreasing.
7777 mo

b) The set Ey is a relatively compact subset of f‘l((—oo,f(U;llz))]) and

B = B u{ul) b white Benoa < {ull)}.

c) For any (k,j) € {1,...,mo} x{1,...,mqy}, the relation U;l) € Ey implies
either (j = j(K') for some k' >k) or j¢&j({1,...,mp}).

d) For any k £k €{1,...,mq}, the relation U,E,?) € E,. implies

(k’>k and f(U,§9>)>f(U,§°>)).

e) The application j: {1,... ,mo} — {1,...,my} is injective.
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Proof.
a) The condition i) of Assumption 5.7 gives

FU) = FUO) = HUY, e\ U - f(U)
< HUL,G\{UOD — FU2)
HUY,, G \{UOY) — F(UY

)
< 1)
_ Wy _ 7O

fWUjny) = FUZ) -

b) It suffices to consuier the local description of A (U ) and A<(U](k ) in
the two cases U ik € Q and UV itk € 0f). The last statement comes from
Co = 09 and the assumed uniqueness of a saddle point between U,EO) and
Cr—1 D Cp.

c) Assume Ul i € Bk

Since U;(k) ¢ Ej, one has k # k'. Moreover the inequality f(U (k,) <

f(U]%Z)) implies that the connected component of f~1((—oo, f(U;(lk,))]), which

(0)

contains U;(llz,) is contained in Ej. Hence Ej, contains U, Igo) and U,,". Finally

E}, is modified into a closed connected set Fj, lying in f~((—o0, f(U" ](k )]) \
{U]((llz)} in the following way. Take the coordinates (z1,...,x,) around Uj(IZ)

which are Morse coordinates if U;(llz) € Q and such that f(z) — f (U;(l,z)) =
Tp + D5 11x2, if U(llz, € 0f2. Consider, for p > 0 small enough, Ej , :=
Ej. N {]z| < p} and its radial projection on E;° := Ej N {|z| = p}. Then
Ej, p = (Ex\ Eg,p) U E};e;f is closed and can be considered as the image of
Ey by a continuous application. Hence it is connected. We have found a
closed connected set Ekp € Q lying in B, C f~((—o0, f(U' ](k )]), which
contains U,g and U,S) , for k' # k| and does not contain Uj(k). Therefore
one cannot have k < k’, because this would contradict the assumption that
U;(llz,) is the unique saddle point between U ,EO) and C_; (Assumption 5.7-ii)
and Definition 5.6). Indeed the existence of another saddle point is obtained
by using Proposition 5.5 by slightly increasing the value of f (U;(l,z)) . Hence,
the only possibility is k' > k.

d) Assume U, O ¢ B, with k # k'. By the same argument as for c), one
then takes a closed connected set Cyp C Ej C f‘l((—oo,f(U;(llz))]) such
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that U”, Uy € Ciur and U\, & Cjpr . This implies &' > k.
Assume now by contradiction that

(¥ >k UY € Band f0F) < JOM)} #0,

and let kg be its smallest element.
We deduce from the existence of Cir, as a closed connected subset of

Ey C (-~ f( ](k )]) containing U,EO) and U,Eg) , the inequality

FUS ) = HUY, ) < FU) -

Since the connected component C' of U;(llz,o) in f~1((—o0 f( ](k })]) contains

U ,gfj) and a point in Cy,_1, it is contained in Ej, and Ej, contains a point of
Cko—1- As a consequence of b), this point cannot belong to Cy.

Hence there exists k1 < kg such that U ,ﬁ?) € C C Ej . Finally, the condition i)
of Assumption 5.7 for ky gives

fUay) — fU) = H(T; o ' Crp1) - f<U;8>>
< H(U.Co\ {UL"Y) = J(U)
< F(USG) = FOY) .
For the last mequaht%f we used the existence of a connected set C' containing
U and the point U € Co \ {U,g?)} such that f(C) € (—oo, f(U]((l,z))] , with

the definition of H(Uk1 . Cro \ {U,g?)}) .
Hence we obtain

FUD) < fO) < OO,

with k1 < kg and U, ,5?) € E}, in contradiction with the definition of ky. Hence
we have proved

VK >k, (U9 € B,) = <f(U,§9)) > f(U,§°>)) .

e) Assume j(k) = j(k"). The point U]((1 U](k/ € UW is the unique saddle

point for (U,go) , Cr—1) and for (U,g)) , Cr—1) .
Then we have
either Ek Ek’
or k<K, UV eB and Jk <k, UD€ EBy.
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According to d), the first case implies
E<k and kK <k,
while the second case gives
k<ki <k and K <ky<k.

Hence only the first case is possible with &' = k. 1

6 Quasimodes.

Like in the boundaryless case, we associate with every U ,§°> (ke{l,...,mo})

a quasimode for A?f’(o) which is approximately supported in Fj , while the
quasimodes for A?’Z’(l) will be supported in the balls B(U;l),2€1), j €

{1,...,m1}. A ball B(U,p), with U € Q and p > 0, is a geodesic ball
and the geodesic distance is denoted by dg . The parameter ; > 0 is fixed
so that :

o do(U,U)>10ey for U, U €U, U #U".
e ForallU e and all k € {1,...,mg}, U & E} implies

dQ(U, Ek) 2 10 g1 .

e The construction of the WKB-approximation of Subsection 4.6 is pos-
sible in the ball B(U;l), 2eq). If U;l) is a boundary point, this means
the introduction of the coordinates (z/, x,) and the existence of .

The parameter £; > 0 will be kept fixed, while we need another parameter
e € (0,e9), which has to be modified at each step of the final induction.

According to Proposition 5.11-b), Assumption 5.7 implies that Ej, inter-
sects 0f) at most at one point :

Fal (1)
E.NoQ) C {Uj(k)} )

The construction presented in [HKN] has to be adapted when this intersection
is not empty and we focus on those changes.
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For every k € {1,...,mp}, we introduce the open set

Qk:éku< U B(U7351>> )

6
UeUNdE, US|

which satisfies

Q= B, U{U{) U ( U B(U,351)> :
UeUNdE, UAU )

For € > 0, this set ) is modified as
(e, 0) = {x €0, do (xQ_k \ B(U;g,g),g>) < 5} UBUY.e),

with § € (0,¢.), 0. > 0 small enough.
The cut-off function x;. € C5°(£2), 0 < x% . < 1 is chosen so that

_ =1.

supp Xk,a C Qk g, 58) and Xk,a
( Qu(e.0:/2\BUL) )

Around U;(llz,), the cut-off function yy . is chosen (more accurately below) so

that U;(llz) & supp Xk and

Ve e B(U(),.¢) . (Xk,g(x) £0,and f(z) < f(U;(l,g))) = (r€ By C ).
(6.1)
Like in [HKN] we deduce from Proposition 5.11 the following properties for

Xk,e -

Proposition 6.1.
By taking 6 = 6. with ¢ € (0,e0], 0 < €9 < &1 small enough, the cut-off
functions x (k€ {1,...,mo}) satisfy the following properties :

a) If x belongs to supp xx. and f(z) < f(U;(l,z)), then x € l%k )

b) There exist C' > 0 and, for any e € (0,&0], a constant C. > 0, such that,
for x € supp Vxi.c,

either = & B(U;(llz),a) and f(U]((llz)) +C < f(x) < f(U]((llz)) +Ce,

or T € B(U;(llz),a) and |f(x)— f(U]((llz)) < Ce.
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c) Forany U € U, U # U;(l,z), the distance do(U,supp Vxk.e) is bounded
from below by 3e1 > 0. If in addition U € supp X, then U € Ej, .

d) If, for some k' € {1,...,mgp}, U9 belongs to supp Xk, then k' > k and
FUDY > FU0), UG < FUk) . ifk#K

e) Foranyj € {l,...,m1}, such that U;l) € SUPP Xk.e 5

either ] g]({17am0}) )
or  j=jk"), forsome k' >k and Uk(;?) € SUpp Xk.e -

The cut-off function yy . is used in the construction of quasi-modes for

A?T © | Like in the boundaryless case, the construction of quasi-modes for
A?Z(l will rely on the approximation by the Dirichlet problem in small

neighborhoods of U(1 , j € {1,...,my}. For interior points U;l) € , this

neighborhood is B(U ,2¢1).  For points U;l) in the boundary 02, this

Dirichlet realization is AD DT,(1) , which was studied in Subsection 4.6 and as-

sociated with the nelghborhood Q w1th p > 0 small enough. Once p > 0

is fixed uniformly for all Ut ;€ 8&2 the parameter £; > 0 is reduced so that

B(U]Q),Q&?l) C Qu,,p for all U]( € 0. Forall j € {1,...,my}, u; denotes a
normalized eigenvector associated with the first (exponentially small) eigen-
value of this Dirichlet realization. The cut-off function 0; € C5°(B(U ](1), 2¢1))

is taken such that 6, = 1 on B(U;l), £1).
Note that the function yj . depends on ¢ € (0, &g, while 6; is kept fixed
like 1 > 0.

Definition 6.2.
For any k € {1,...,mg}, the (¢, h)-dependent function zb,(co) is defined by

) _ —(f@— @ nm|| !
¢ (.2?) Xka(x)e

( (z)e~F@=FCIN/R

XkelT)€E

For any j € {1,...,m1}, the h-dependent 1-form Q/J](-l) is defined by

() = (105051 7") 0 (@) (@) -
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Forany k € {1,...,mp}, we set

N (e, ) = [(0liy el )

2

Remark 6.3.
a) For the sake of conciseness, we omit the (e, h)- and h- dependence in the

notations ¢,(€O) and w](-l).
b) Note that, for boundary points U M) ¢ 0N, the quasimode ¢](-1) only belongs

to the form domain AlHéT( ) fADT(l This brings no additional difficulty
to what was done in [HKN/ for the boundaryless case, because the preliminary
approximation of the spectral subspace with quasimodes only requires the Min-
Mazx principle or Lemma 2.8.

We end this section by reviewing the quasimodal estimates which are de-
rived from Propositions 5.11 and 6.1. We refer the reader to [HKN] for the

details. The asymptotic expansion of <¢J(%,)€) | d;?zl¢,£0)> has also be done in
[HKN] when U](k € ) is an interior point. We will simply complete this
analysis by establishing the asymptotic expansion of < i) | av) Fan > , When
Ul €09

Remind that the parameter ¢; > 0 is fixed, while gy and € € (0, gq] will

be adapted in the different steps of the proof. We shall denote by a a
generic positive constant which is independent of ¢ € (0,¢).

From Proposition 5.11-d) and the good localization of Vyy ., we deduce
the following estimates for ¢,(€O)

Proposition 6.4.
The system of (e, h)-dependent functions (w,(f))ke{l
almost orthogonal with

(w10 = Ideno + O.(e™/"),

k7kl€{1 7777 mO}

mo} Of Definition 6.2 is

.....

and there ezists a > 0 and, for any € € (0,g0], C() and ho(e) such that, for
any h € (0, ho(e)],

(ARG | o) = “d}o,)lw,io))) < O(e)e 2V W)~ WM)—ae)
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Corollary 6.5.
There ezists eg > 0 and o > 0 such that, for any choice of € in (0, o] and for

allk € {1,...,mp}, the (¢, h)-dependent quasimodes ¢,(€O) satisfy the estimate
(AR |4 < Gt

The exponential decay of the first eigenvector u;, associated with an ex-
ponentially small eigenvalue, of the Dirichlet realization of A?QL around U ](1) ,
provides the next estimates for w](-l). We refer the reader to [HKN] or [HelSj4]
for U;l) €  and to Subsection 4.6 for U}l) € 0N.

Proposition 6.6.

The system of h-dependent 1-forms, <¢](1)> { }
jE 1,..., mi

is orthonormal and there exists o > 0 independent of € such that

given in Definition 6.2

D) = O(eMy
forallj e {l,...,m}.

Before we state the next result, let us specify the choice of x4 . in B (U;(llz), £)

in the case when U;(l,z) € 982 We assume ¢ € (0,g9), with 0 < g9 < 55. We

use again the coordinate system (z’, z,,) introduced in Section 3 and Subsec-
tion 4.6 such that :

)=0, 2, (UQ) =0, 00N B(U).2) C {z, =0}

1 .
[ x,) = f(U((llz)) +z, + §f_(x'), T, <0in QN B(U;(llz,), 2e1) .

J
The function ®(z) which equals the Agmon distance da,(z, U]((llz)) is given by
/ 1 /
o2 x,) = —xp + if_(x ).

The construction of the coordinate system (z’, x,,) which block diagonalizes
the metric everywhere (see (3.26)) permits*, when n > 1, to choose the

4The case n = 1 is easier (no Laplace method has to be used) and we refer the reader
to the appendix.
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boundary coordinates ' = (x1, ..., x,_1) such that dzy Adxs ... Adx, 1 Adx,
is the Riemannian volume form in B (U;(llz,), 2¢1). This means

x(dxy A ... Ndry_y) = dz,, *dr, = (-1)""'dr;A...ANdr,_;. (6.2)

The cut-off function yy . fulfills the following conditions which are illustrated
in Figure 1 :

i) The support of xx . does not meet 02 (already stated).

ii) In a neighborhood
V= {x e BU).2), || < ya} (6.3)

of the curve {2’ =0, xz, < 0}, the function xx. only depends on x,, :
Xke(T) = Xpe(xy), for z € V.

0Q = {X, =0}

Figure 1: Case U;(l,z) € 0. The support of Ve is localized between the
dashed curve. The function f is constant along 0 .

In Subsection 4.6, we found the WKB approximation u%** of an eigenvector

uf, such that
P(x)

e h ut* = —2a0(z) dx, + hb'(z, h) ,
ap(0) =1, b (x,h) ~ >, hiby(x) ,
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and
Ve e B(UY)2e1), e [0 ul() —uf*(2))] < Canh? .
The normalized eigenvector that we take here is

Uiy = (_1>n_1uh '
” et}

Let us first compute accurately
[ut]] = 650wt ]| + Oh>) = [|6;09ut™|| + O(h>) .

We have, denoting by dx the Riemannian volume measure,

2®(x)

2 _
[O5ui™||” = [ 40509 (2)*(dwn | dan)ao(x)?e” 77 da
2an

=4 [ 00 (x)%ag(z)?e™x e dxy A ... Ndxy, ,

(6.4)

where the integral is over z,, < 0. The Laplace method, applied with the
function f_ = Qf}aﬂ - 2f(U]((1,Z)) , gives

e'kuwkb 222]1 (ﬂ-h>nT_1
J(k)t1

<5f,ém (Ul
with

Note that the Laplace method gives actually a full asymptotic expansion.
After the normalization we get, for all z € B (U;(l,z)),

<5f,aQ(U]((1]z))> 1/4

(wh) 5

2(z)

(bow() d, + hbi (2, h)) e =
(6.5)

Wi (@) = (-1)"V2r

with by x(0) = 1 and b (x, h) ~ 3,5 hbL, ().
For the quasimode w,io), a direct Laplace method provides (see [HKN])

1/4
det Hess f(U,EO)) ’

(xh)n/A
with ax(h) ~ > 52, har,e and ajo = 1.

F@) -0
h

Ve, ¢\(z)= ar(h)Xne(z)e . (6.6)
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Proposition 6.7.

There exist ey and sequences (Ckm)men+, such that the (e, h)-dependent and
h-dependent quasimodes wlgo) and zb](-l) ((k,j) € {1,....mo} x {1,...,mq}
and € € (0,e0]) satisfy :

WM 1 dOpOy =0 if j#£5(k)

1/4

det(Hess f(U ,§ )
det(Hess f (U, ( i)

1
xexp— (FUNL) = FU) x [L+hel(n)] |
if j =j(k) and U} €

hl
1 0 0
(Wi | dppai”) = (1" = AU

and
1/4

\/§h1/4

. det(Hess f(U"))
(Wi L) = ()" ‘

5f,aQ(U;(l;z)))
1
xexp— (FU) = FWUI)) x [1+hel(n)] |
if j =j(k) and U\, € 00,

with ci(h) ~ > o ckmh™.

Remark 6.8.
We recall that we were computing above in coordmates such that the Rieman-
nian volume form is dxqy A ... Adx,_1 A df( ](k)). The prefactor in the last

formula of Proposition 6.7 can be expressed more intrinsically by observing
that :

r0a(U)] = [AWE| < [det(Hess 1, 1)

Proof of Proposition 6.7.

The first statement for j # j(k) is a consequence of our choice of £; > 0 and
Xk which gives according to Proposition 6.1-¢) supp ¢](-1) N supp Vi = 0.
We conclude with d;?,)l ,530) = Cep (d9xpe) e 7/0.
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The second case was completely treated in [HKN] for the boundaryless prob-
lem.

The last one, j = j(k) with U;(llz) € 012, is adapted from the second one by
using the specific approximations (6.6) and (6.5). With

d(o <Xk 66 5?) =e f(z hd( Xk, »

we obtain the existence, for any € > 0, of g. > 0 such that

)detHessf(U( )‘ o

an/4

<¢J(k | d(0h¢15;0)> =h'"Ta(h

1) G@-s vy
<[ i e T s
BUW. ¢)

1 0
N
+0. |e 2 ,
with ak(h) ~ 1+ Z;il heau .

The two additional conditions i) and ii) given above for the cutoff function
Xk permit to reduce the integration domain to the neighborhood V), intro-
duced in (6.3) :

- ’det Hess f(U(0 )
<](k‘d >:h *ay(h /4
(F(@)—rw )y

x / WD | X e daa)(@)e R da

f(U%) 1) toe
+ OE h )

‘ 1/4

for some o. > 0.
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Finally (6.5) and (6.2) lead to

(et 145301

1
_pis

1 1/4
V2T ’det Hess f(U,EO)) ! <5f,ag(U;(112))>

n/2+1/4

®(@)+f(@) - F0”)
X (—1)"/ e 2 (X'ge(@n) + O=(h)) day Ndagy A ... A day,
%

and, with f +® = f_+ f(U{)), to

(0) 1/4 ( 1) )1/4
(1) d(o) O\ _ h3/4_% V2T ‘det Hess f(Uk )) df’aQ(Uj(k))
wj(’f) | deate ) = /21174

f(U((lll)) 1wy

x(—1)"e” {/ e‘f—(x)/h(x’k,a(xn) + O.(h))dzy Ndxa A ... A dxn} :

The Laplace method, applied with f_ = 2f‘8§2 — 2f(UJ((1,2)), gives

/M - T N M L. 73 Zdﬂf
- <5f89(U( ))

We conclude for the main term by using

/X;E(xn) de, = —1.
e

Corollary 6.9.
Let Q/JI(CO) and ¢](-1) denote the (g, h)-dependent and h-dependent quasimodes of

Definition 6.2. Assume that the 1-forms (w](-l))je{l mi} Satisfy

e

H _ —a/h



for some a > 0 independent of € € (0,e0]. Then there exist e, > 0 and o/ > 0
such that, for all € € (0,¢;], the estimates

(1) (0) /
| dD )| < Cee TSGR gy, (67)
and
1 0 0 1 0 0 —a!
(it | ") = (il | dfl?) (140 ™) . (68)

hold for all (k,j) € {1,...,mo} x {1,...,my}.

The proof is a straightforward consequence of Propositions 6.4 and 6.7
which give :
[0 < o (iR

7 Result and final proof.

7.1 Main result

Let us first recall some notations. The local minima U,EO) (ke {l,...,mo})
are labelled according to Assumption 5.7, the generalized critical points with
index 1, U;(l,z) are those introduced in Definition 5.9 and the quantity Ag(e, h)

is associated with the quasimodes w,io), wj(.a,), in Definition 6.2 :

e ) = () | )

At a generalized critical point U with index 1, the Hessians Hess f(U) or
Hess f ‘ 50 are computed in normal coordinates for the metric g, while consid-
ering only the tangential coordinates 2/ = (x1,...,z,_1) for the second case.
We refer to Remark 6.8 for the right normalization when U € 0€). When
U € Q, M\ (U) denotes the negative eigenvalue of Hess f(U).

Theorem 7.1.
Under Assumptions 3.1 and 5.7, the first eigenvalues Ay (h), ..., Apy(h) of
5?5’(0) admit the following asymptotic expansion. There exist eg > 0 and

a > 0, such that, for any e € (0, &),
Vke{l,....,mo}, Me(h)=X(e,h)(1+ (’)E(e“"/h)) .
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Moreover there exist sequences (Cym)men+ such that, for any e € (0, o],

‘det(Hess f(U,gO)))’

a; h ~
Xi(e h) = M (Uf)] (1+ hei(h))

‘det(Hess f(U]((llz,))))
X oxp— 2 <f(U(1) ) — f(U(O))> ifUY € q
h J(k) k ’ i (k) )

and

- 2h1/2|Vf(U;(1,2))\ ‘det(Hess f(U,EO))))

) 7r /2

(1 + hc,lg(h))

2 (1) (0) (1)
with ci(h) ~ 3 00 o K" Chom -

This theorem implies the theorem announced in the first section. The
core of the proof is essentially the same as in the case without boundary
treated in [HKN]. We give it for the sake of completeness. The main idea is
that the eigenvalues of A?f’(o) ‘ o) = ﬂ](c?%* ﬂ](c?})L are the singular values of ﬂ}?fz.
The Fan inequality for singular values permits to control the relative error
for all singular values, when the matrix of ﬂ}?,z is expressed in different bases.
The proof will be done in two steps.

7.2 Finite dimensional reduction

Theorem 3.3 and the results of Section 5 lead to the

Proposition 7.2.
There exist a, o’ > 0 such that :

DT, (¢ DT, (¢
1[07h5/2)(Af,h ( )> - 1[0,8_a/h)(A‘f’h ( )> 5 fOT’ 6 - 0, 1 .
Moreover if one sets

Vi {lomed, ol = T (A7), (7.1)

2
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where the %@ are the (e,h)- and h- dependent quasimodes introduced in
Definition 6.2, the system <vw is a basis of F©) such that :

2

>i€{1,...,m[}

1) Vie{l,...,m), )

o = ol = oy

2

2 V= (1) = ldon, +O(").
i €410y}
Remark 7.3.
Note that here again we omit the (e, h)-dependence (resp. h-dependence) of

the functions v,i,o) (resp. 1-forms v](-l)) in the notation.

Proof.
Let £ € {0,1} and 7 € {1,...,m,}. According to Lemma 2.8, Corollary 6.5

and Proposition 6.6, H1[h3/2/2,+m)(Aff’“))W’

)

is estimated from above by

O(e=®'/"). The second estimate then comes from the almost orthonormal-

ity of <w§£)) { . Since we know by Proposition 3.6-iii) that F) has
1€ 1,...,mg

dimension my, the system (vf@)ie{lwml} is a basis of F¥ . We conclude with

DT,(6) (¢) | (£ DT,(6) (¢ ¢ 2
<Af,h()vi()‘U§)>§<Af,h(),’7bi()|77bz'()>§e 2a/h

Definition 7.4.

The basis (ez(.g))ie{17..,7ml} of F9 is the orthonormal basis derived from (U@)z‘eu,...,me}

by the Gram-Schmidt orthonormalization procedure

655) _ Z [(V(£)>—1/2Li, Ui(f) '

,L'/

The my X mg matriz M is the matriz of’ ﬁ}?,z in the bases (e,({/,o))ke{lmmo} and

(egl))je{l,,,,7m1}. Its square M*M is called the interaction matriz.
According to (2.21), the my eigenvalues of the restricted Witten Laplacian

A?g,(o) } o) = ﬁ}?fz* ﬂ](c?})L are the eigenvalues of the interaction matrix M*M.

®We recall from (1.9) that 6}?,)1 is defined from F(®) into F(!) by the restriction of dgc?,)L
to F(O.
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Hence it is theoretically possible to determine the low lying eigenvalues of
A?;’(O) by analyzing the matrix M. The problem is that the coefficients of
the matrix M are not known at this level accurately enough in order to split

the different exponentially small scales. Like in [HKN], we will work with

the matrix @ | 20 O
1= < ! Ot ) . 7.2
< J ‘ﬁf,h k > G, k)E{L,...;m1}x{1,...mo} ( )

(1)7*)

v

J je{l,..m1}
dual to (U](l))je{l,...,ml} in M . This permits to use directly all the accurate

of the map ﬁ](c?;)” written in the bases (v,(fo))ke{l,.,,7m0} in F© and <

information that we have on the quasimodes wz-(é). The fact that these bases
are not orthonormal does not make any problem if one notices that the eigen-
values of M*M are the squares of the singular values of ﬂj(co})l.

7.3 Singular values and induction.

The first eigenvalues A\g(h), 1 < k < myg, of A?g,(o) are the squares of the
singular values® fi,,,11-1(M) of M. In other words,

Ar(h) = [:umo+1—k <ﬁj(r0;)l>]2 :

We will use the simple consequence of the Fan inequalities (see [Siml],

[GoKr]) :

Proposition 7.5.
For any matrices A and B such that,

max {||B||, |B7||} <1+p,

the singular values of A and AB satisfy

e (A)
(1+p)

and the same holds with AB replaced by BA.

< ur(AB) < (1 + p)ux(A)

6The singular values p(A) are numbered here as usual in the decreasing order with

p(A) = [|A]l.

83



Hence a small change of bases induces a small relative variation of the
singular values and it is not necessary to work with orthonormal bases in
order to estimate the singular values.

For example, we have, for any k € {1,...,mq},
Mk(ﬁ](”?}b = (M) = u(7) (1 + O(e_a/h)) ,

where 7 is the matrix of the map ﬁ](f’)% introduced in (7.2).
We will construct by reverse induction on K, from mg down to K = 0, two

..........

properties hold for € € (0, 0] and some a > 0 independent of ¢.
1) The systems (U;(j}()K<k§m0 and (U]('%])g),K)K<kSmo are orthonormal.
We then set

FI({O) = Span {vg{,K <k< mo} and FI({l) = Span{vj(.blLK,K <k< mo} .

1
2) For 1 <k <K, v,ﬁ)}{ belongs to (F;?) and for j & {j(k), K <k < mqg},

1
vj(lf){ belongs to (F[(g)) .
3) The estimates,

Vie {1,...,md), )

hold for ¢/ =0, 1.
4) For K < k < my, the equalities

(0), (0) 1) DT,(0), (0) (0)
Brnve i = ViViy e and Ay Uik = Vilk

hold with
1 0) (0 a
Vi = <¢]((;)g) | d},zﬁb;ﬁ )> (1 + Oc(e /h)> :

They imply, observing also that v, # 0,

AVVORD c R, tefo1} .
5) For all j & {j(k), K <k <mp}and all k € {1,..., K}, we have
1 0 0 1 0 0
(vik | Brnvik) = (i | dpan”) -
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We recall that the zbi(e) and the vi(e) depend on h € (0, ho] and ¢ € (0,&¢],

while o > 0 enters in the exponential estimates. The parameters €y > 0 and
a > 0 belong to intervals which have to be reduced each time that one refers
to Corollary 6.9. This is done a finite number of times at each step of the
induction.

Initialization : the case K = mj.

We take v,(fr)no = v,(f) and v;ln)m = UJ(»I) according to the definition of the

previous section. Conditions 1), 2) and 4) are empty. Conditions 2) and 3)
are given in Proposition 7.2. For Condition 5), we write

1 0) (0 DT, (1 1 0 DT,(0 0
(W 1 By = (opormy (A7)0 | diitogorn (AZE)0”)

DT,(1)y (1 0) (0 1 0) (0
= (L porny (AT i [ dD ™) = (P | dP)”) .
Recursion : from K to K — 1.

Assume that the result is true for K > 0. Conditions 1) and 4) say that the
quantities |vg|, K < k < my are singular values of ﬂ](c?})L (v2 is an eigenvalue

of A?,Z’(O) | 0))- Moreover the estimate,

0) (0 —a
v = (W0 [ de”) (1+0e7M) (7.3)
and Proposition 6.7 imply

| > CLhM2e U Uiucin)~F UL/ > O o= WUiu) =S U =200)/h (7 4)
with a7 independent of € > 0.
Let us consider the dual basis (U](ll):) in FO . For j = j(k), K <k < my,

v](lf){* equals vj(lf){ and consequently

v = = 0 ()

The matrix of ﬁ}?}z : (F[(?))l — (Fl(fl))L in the bases (v,(g?}()lngK and

(UJ(',lf)é*)jéf{j(k),K<kgmo} equals

M) | 40, © )
<<UJ’K | Bravi) i (k) K <k<mo} 1<k<K
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Conditions 3) and 5) and Corollary 6.9 lead to

= OE(e_U(Ua‘(K))—f(U,(?))—al)/h) .

Hﬁf,h‘(FI((O))L

Hence the quantity ||, K < k < myg are the first largest singular values of

G
Vk € {K+ 17""m0}> ‘Vk‘ = Hmo+1- k(ﬁfh) )‘k(h)

and we have

(7.6)

VA = HUmo+1-K ﬂ Hﬂ

Let us now consider more carefully B}O}z‘w(m) . and its matrix (7.5) in the
’ K

bases (v,iO%()l<k<K, ( (1), & )jgli(k).K<k<mo}- With the same arguments as above
relying on Corollary 6 9 and Conditions 3) and 5), its coefficients have the
form

W0 1 ADDY (055005 Orc + Ocle™/M)) (7.7)

Since the two bases are O.(e~*/")-close to orthonormal bases, we obtain

McB) = [ (@i | )| (L4 0L/

We set " 0
. d
Vi = %(1 )|t VAr(R) . (7.8)
‘<77b] |dfh K >)
We have
Binvick = VRV i Oclvige™ /M), (7.9)

We next define the new bases (UIE,O}{ 1) and (v; [)< 1)

Of course we keep v,(ﬁ%_l = U,(;’)%{ and U(},)C) K1 = ]((,1 for K <k <my.

We then take

-1

0 DT,(0 DT,(0
Vick-1 = Hl{AK}(Af,h ( ))UK,K’ L (A v
and
(1) L o ©
V(R -1 = ;@,th,K_l :
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For1<k<K-1landjé¢{jk),K—1<k<mg}, we take
0 0 0
“1&}(-1 = UIE%( <UkK ‘ “KK 1>,U§<)K 1
and
(1) 1)
5K | “j(K),K—1>Uj(K),K—1

By construction, conditions 1), 2) and 4) are Satisﬁed by these new bases.
Condition 3) will be satisfied as well if HUQ)K - UKK 1” = O.(e~*/") holds.

The identity (7.6) gives
Vke{l,....K}, % =1pag(A7r . (7.10)

Moreover Corollary 6.9 yields

VEe{l,....K —1},¥j e {l,...,mi}, |(v}} | 5fhka>‘ — O.(V e/

Like in the proof of Proposition 7.2, we obtain for some a; > 0

DT,(0 DT,(0
Loy (A7) = 1g s eeam (A7) . (7.11)

We now write, by spectral decomposition and using (7.11) and (7.10),

2
N B e

= (AT o) (7.12)

and observe that by (7.9)

2
DT,(0) (0 —a
(A Pl o) = Hﬂfh KKH = A (L+OL(e M) . (7.13)
Hence we obtain
Hl{)\K} ADT (0 UQ?KH =14+ 05(6_a8/h) '

We conclude with

2 2
D 0 0) DT 0
Hl[o,AK)(Af,h 0 ))UJ(I()KH = UJ(KK‘ Hl{AK} (A ! )>U§<)KH

— O ( —2a/h) —G—O ( —2a8/h)
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We have proved

0 0 —a
va{)K - U%)K 1H = O(e 5/h) .
This implies

0) (0 1
"

K T VEYjr) -1

5fh KK ﬁthKK 1H

DT, 0 0
— B0 (ATE ) 02 = o)

f.h K T UkKk-1

= OE(\/ )\K€_a5/h) ,

while we have

HﬁfthK — I/K’U(l > H = O.(vge /My .

The almost orthonormality of (v )

v; K)]e{l mo} inherited from Condition 3)
and the almost orthogonality of (w )){17 mi} imply

(1) Sk —a/2h
Vi), — Uj(K),KH = O (e .

This yields

1) 1) —ag/h
Vik),K-1 " Uj(K),KH =Oc(e o/ ) -

Let us verify Condition 5) for the new bases
Forke{l,...,K —

1}, the construction of the new bases and the induction
gives
(0) (0) (0) (0) (0)
Uk, K1 =V x — <Uk,K ‘ VK K- 1>UK,K—1
_ ., D " (0)
= Vkmo — 2uK<K'<mg Uk,K' Vg K11
0

= ’Uk

-3 b ger Vi)
K<K'<mg “k.K" VK' K—1 >

with th(/ = <U]E;O}{/ ‘ U§?2,K’—l> :

, with v,i,o) = 1[0,h3/2)(A?Z7(0)) IE:O) )

Hence we get

0 0 0 0
Binvix = Bpnod

£h Yk Z b,k ﬁthKgK 1
K<K'<mg
DT,(1 0) ,(0
- 1[0,h3/2)(Af,h ( )) d;,})ﬂﬁl(g )~

Z te k' Vi U](-&,),K_

K<K'<mg
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Meanwhile, for j & {j(k), K —1 <k <myg}, the vectors U(I)( | were con-
structed such that

i
1 1 1 1)
J(I)< 1€ (FI(<11)l = <Spa’n{vj('&(),l(—l7 e ’Uj(mo),K—l}) :

We obtain, for all k € {1,..., K —1} and all j & {j(k), K — 1 < k < my},

<]K 1| ﬁfhka ) = <1[0h3/2) <A?Z’(l)> Vi k-1 | dfh¢k >
(vpk—1 | dipi) -

Conclusion for K = 0 : When K = 0, we obtain an orthonormal basis
(v,iog)0<k<mo of F( ) = F and an orthonormal basis (v((,)g))0<k§mo of Fo(l) C

F such that for € € (0,¢) and o > 0 independent of ¢,

Vke{l,...,mo}, ﬂfhvk())_ykvj(%l)c)O’

Vel = g1 (577) -
v = (00 [ ) (1+ Ocle™™)) .
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A An example in dimension 1

We present more directly the 1-dimensional case. We just look at the case
of an interval [a,b]. We describe techniques which were first developed for
Neumann in [BoHe], adapting to one dimensional problem the techniques
developed in [HelSj1]. We just take the simple example of an interval (a, b)
with @ < 0 < b and the Dirichlet realization of the semi-classical Witten
Laplacian

d2
AP, = =W o 4 (@) = hf" () (A1)
associated to a function f on C*°([a,b]) admitting a unique minimum at 0

f(0)=f'(0)=0, (A.2)
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and no local maxima :

f'(z) #0 on [a,b] \ {0} . (A.3)
In particular we get :
f'(a)<0, f'(b) >0. (A4)
The function (a,b) 3 z +— uy = exp —@ satisfies
x
Aggzl exp _f(l(z ) =0, (A.5)

but does not satisfy the Dirichlet condition at a and b. Of course, one can
take a cut-off function y with compact support in (a,b) and equal to one on
la + €,b — €) but considering u, = yu, we get

A9 () = Ofexp — WSO, 91

with f(¢) - 0ase—0.
The best which can be obtained with this construction is the following
estimate for the ground state energy :

2min(f(a), f(b))
h

By taking an n-dependent cut-off function (n = Chlogh ), one can arrive to

2min(f(a), f(b))
h

0 < Ai(h) < Cyexp—

)exp%, Vn > 0. (A.6)

M(h) = h N O(exp — ), (A7)

for some N > 0.
This does not give a lower bound. We also observe that this quasimode works
also for the Neumann problem.

In order to have a better result, one can simply proceed in the following
way. Let us assume for simplification that

fla) < f(b). (A.8)

Then the main effect is in ¢ and we can continue to use a simple cut-off near
b. In order to satisfy the Dirichlet condition at a, we have to add a correction.
For this we need another “formal” solution, which is given by the
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Lemma A.1.
For any formal series Zj a;h? | there exists on [a,a+ 1) (o > 0) a formal
WKB solution

f(z)

u* = c(x, h) exp T (A.9)

in the kernel of ASS;L , such that
c(x, h) ~ ch(x)hj : (A.10)

Jj=20
and ‘
cla,h) ~ > agh . (A.11)
J
Proof
We expand the relation :
f(z) f(z)
exp —(TA;%(C(L h) exp (T) ~0, (A.12)

in powers of h.
This explicitely leads to the following equation :

2f"c+2f'd +hd" ~ 0, (A.13)

or
[2¢f' 4+ hd) ~ 0. (A.14)
We first observe that the coefficient of h° vanishes (this corresponds to the

fact that —f is a solution of the eikonal equation). Looking now at the
coefficient of h, we obtain :

—2f(x)cy(x) — 2f"(x)co(z) =0, cola) = ayp . (A.15)

Observing that f/(z) # 0 near a, there is no problem for solving the equation,
in the neighborhood of a, which can be more simply written as

(cof)' =0, cola) = ap . (A.16)
At the step j + 1, we will find :
=2f'(x)cj(x) = 2f"(x)cj(x) = ¢f 4 () , ¢j(a) = ay (A.17)
or
2¢j(x) f'(x) + ¢4 (x) = 20;f"(a) + ¢4 (a) - (A.18)
O
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The good quasimode

We define :

2
u* = yu;, — exp ——flia) xur (A.19)

where

e x satisfies x = 1 on [a, b — €) and vanishes near b;

o u¥* is associated to ag = 1, aj = 0 for j > 0;

e x satisfies x = 1 on [a, a + ¢) and vanishes outside [a, a + 2¢) .

Here € and €y can be chosen arbirarily small (one condition is 2¢5 < 19) but
will be then fixed independently of h .

We fix some summation (by the Borel procedure) for c(z,h) with the
property that c(a,h) = 1. So the corresponding function u**® (we use the
same notation) satisfies the Dirichlet condition at a and b. Let us compute :

AP ek = (A o
—exp — }Ea [A }L, Xju® (A.20)

—exp —2 ha) XA(%u

There are three terms in the right hand side that we write r; + 79 4+ r3 and
that we analyze separately.

e 1 is supported near b and its size is (with in mind our assumption that
f(a) < f(b)) of order O(exp — f(b)) exp 29 We can choose € > 0 such
that :

f(a)) T

;) €XP =, supp 71 C(b—e,b), (A21)

[[r1][z2 = O(exp — 5

for some n; > 0.

e 715 is supported in (a+ €, a+ 2¢y) and its size is exp —2f( a) exp (“+€°)
If we observe that f(a + €¢) < f(a), we get
a
[|72||z2 = O(exp—#)exp —% , supp r2 C (a+ €, a+ 2¢) ,
(A.22)

for some ny > 0.
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e 13 is supported in [a, a + 2¢y) and its size is O(h*™) exp —L}(f”) exp %

In particular, we get :
[|Irs]|L2 = O(h™) exp —@ , supp r3 C la, a+ 2¢) . (A.23)

So this is 73 which is the dominant term for the computation of the L? norm
of the error and we have finally obtained

AL u™ = O(h*) exp —$ , (A.24)

in L?((a,b)), for a suitable choice of ¢ and .
It is easy, to get a lower bound for ||[u®*?|| assuming for example

f"(0) > 0. (A.25)

In this case, we immediately get from this first computation, that there
is a unique eigenvalue of Af%’D” in the interval [0, h2] which is actually

exponentially small and that there exists p(h) ~ h~ipy with py # 0 such
that the normalized positive eigenvector v (z, h) satisfies :

vi(z, h) — p(h)u”** = O(h™) exp —@ : (A.26)

We note also that h%p(h) has a complete expansion in powers of h, depending
only on the Taylor expansion of f at the origin. We have indeed :
1
p(h)?

In this situation, elementary Hilbertian computations (see [HelSjl]) give
that :

~ ||u k)2 (A.27)

<A(O) Uk | kb N 2f(a
f’}|l|uwkb||2 + O(h™) exp — f]E ) .

For a more precise estimate of the right hand side, we have consequently
to come back to a more careful estimation of the terms (r; | u***) modulo

)\1(]1) =

(A.28)

O(h>) exp —Lf(f) . Let us determine the significant terms.

e We can clearly forget (r; | u®*?)

2
exp f}Ea) (r1 | u®*) = exp —% . (A.29)

which satisfies, for n; > 0,

97



e For ry, we get :

2 2
exp #( |0 = oxp 2L }5‘” (ry | un) + O(®) . (A.30)
e For r3, we get :
exp 22Dy [ uty = 0() (A.31)
From this analysis, we get :
(ra | up) ooy r 2f(a)
A1(h) Tl + O(h™) exp P (A.32)
with 75 defined after (A.20). So
2f(a (AT R ) o
exp ;E ) Ay(n) = WP X o O™ . (A.33)

The computation is now elementary (and rather standard).

(AP X | w) = —h [ (W(X"c(x, h) + 2X'¢) + 2X'c(w, b)) f'(z)dx
= —hfb ~’20f’+c |dx

~ =2hf'(a) — h*(a) .
In the last line, we have used the eikonal equation (modulo O(h>)) and an

integration by parts. We are happy to recover as expected that the result is
independent of the choice of y, with the above properties. We finally get :

exp 2L }E“) M(h) = Hi% L O™, (A.34)
with
d(h) = —2hf'(a)(1+ O(h)) . (A.35)

So we have proved :

Proposition A.2.
Under assumptions (A.2), (A.3), (A.4), (A.8) and (A.25), the lowest eigen-

value of Aéo} has the following expansion :

exp 2f(a) M(R) = —2(x)"% hE f(a) f(0)3 (1 + O(h)) . (A.36)
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Note that there are in principle no problem for computing explicitly a
complete expansion of the right hand side in (A.36). Note also that we have
proceeded differently in the general case but that we of course recover (A.36)
as subcase of Theorem 1.1.

Remark A.3.

The treatment in our main text is a little different but we recall that by
applying dy.p, to the localized quasimode constructed for A;(’),)l near a or near
b, we get two orthogonal quasimodes showing the existence of a spectral space
of dimension > 2 corresponding to exponentially small eigenvalues.
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