Developing empirical potentials from ab initio simulations for modelling silicate glasses - Laboratoire Charles Coulomb (L2C) Accéder directement au contenu
Communication Dans Un Congrès Année : 2017

Developing empirical potentials from ab initio simulations for modelling silicate glasses

Simona Ispas
  • Fonction : Auteur correspondant
  • PersonId : 1012704

Connectez-vous pour contacter l'auteur

Résumé

We have parameterized empirical potentials for molecular dynamics (MD) simulations of multi-component silicate glasses. The main motivation has been to improve predictions of static properties like elastic moduli and dynamic properties like vibrational density of states (VDOS) that MD simulations have generally not been able to estimate correctly, while still using a simple functional form for computational efficiency. Our approach has been to fit the potentials to data extracted from accurate first principles calculations to predict both the static and dynamic properties correctly, by explicitly incor- porating the radial distribution function (RDF) and the VDOS into the cost function of the fitting scheme. The current optimization scheme is an extension of a recent work using as input only the structural data from the ab initio simulations, and which has been applied in the past to obtain a reliable potential for amorphous silica [1,2]. The newly developed potentials will be used to study the elastic response of multi-component oxide glasses to external stimuli such as high temperatures, high pressures and high strains, and their deformation modes under different loading conditions. A. Carré, J. Horbach, S. Ispas, W. Kob, Europhys. Lett. 82 (2008) 17001. A. Carré, S. Ispas, J. Horbach, W. Kob, Comput. Mater. Sci. 124 (2016) 323
Fichier non déposé

Dates et versions

hal-01938497 , version 1 (28-11-2018)

Identifiants

  • HAL Id : hal-01938497 , version 1

Citer

Simona Ispas. Developing empirical potentials from ab initio simulations for modelling silicate glasses. Bridging the Scales in Glasses III, Feb 2017, Mainz, Germany. ⟨hal-01938497⟩
23 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More